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Abstract 

This technical report introduces Categorical AI (CAI), a novel artificial intelligence framework 
founded on category theory. Contemporary AI systems, despite their impressive capabilities, often 
lack formal theoretical foundations for compositional reasoning, knowledge transfer, and systematic 
generalization. We address these limitations by implementing a comprehensive framework that 
leverages category theory's mathematical rigor to represent and manipulate knowledge structures. 
The CAI architecture comprises five principal components: (1) a Categorical Knowledge Base 
representing concepts and relationships as objects and morphisms; (2) a Functorial Mapping Layer 
implementing structure-preserving transformations between knowledge domains; (3) a Natural 
Transformation Network for comparing and integrating different knowledge representations; (4) a 
Kan Extension Engine for principled knowledge generalization; and (5) a Topos-Theoretic 
Reasoning Module for handling uncertainty and modal reasoning. Through extensive empirical 
evaluation on standard benchmarks including MMLU, GSM8K, HellaSwag, TruthfulQA, and 
MATH, CAI demonstrates statistically significant improvements over state-of-the-art models 
(GPT-4.5, Claude-3.7-Sonnet, and Gemini 2.5 Pro), particularly in tasks requiring compositional 
reasoning (+7.5%), cross-domain knowledge transfer (+7.3%), and generalization capabilities 
(+6.6%). Ablation studies confirm that these improvements stem from CAI's category-theoretic 
foundations rather than parametric advantages. Our results suggest that category theory provides a 
promising mathematical foundation for next-generation AI systems, offering formal guarantees for 
reasoning processes while maintaining computational tractability. We identify limitations and 
outline directions for future research, including automated categorical structure learning, improved 
scalability of Kan extensions, integration with perceptual systems, dynamic category evolution, and 
enhanced explainability. 

1. Introduction 

Contemporary artificial intelligence systems, while demonstrating impressive capabilities, often 
lack formal theoretical foundations that can guarantee compositional reasoning, knowledge transfer, 
and systematic generalization (Lake et al., 2017; Marcus, 2020). Neural network architectures, 
including transformer-based large language models like GPT-4.5 and Claude-3.7-Sonnet, rely 
primarily on statistical pattern recognition without explicit representational structures for 
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knowledge composition and transformation. This fundamental limitation manifests in several well-
documented phenomena, including: 

1. Brittleness to distribution shifts: Small perturbations in input data can lead to catastrophic 
failures in reasoning (Geirhos et al., 2020) 
2. Limited compositional generalization: Inability to systematically recombine known concepts in 
novel ways (Keysers et al., 2020) 
3. Opacity of reasoning processes: Difficulty in explaining or verifying inference chains (Rudin, 
2019) 
4. Knowledge inconsistency: Contradictory beliefs across different contexts (Lin et al., 2022) 
5. Inefficient transfer learning: Requiring extensive fine-tuning when adapting to related domains 
(Zhuang et al., 2021) 

Category theory, as a mathematical framework for studying abstract structures and their 
relationships, offers a promising foundation for addressing these limitations (Spivak, 2014; Fong & 
Spivak, 2019). Originally developed by Eilenberg and Mac Lane (1945) to connect algebra and 
topology, category theory has evolved into a universal language for mathematics that emphasizes 
relationships and transformations rather than intrinsic properties of objects. By representing 
knowledge as objects and transformations as morphisms within categorical structures, we can 
formalize the compositional nature of intelligence while maintaining computational efficiency. 

The application of category theory to artificial intelligence is not entirely new. Previous work has 
explored categorical perspectives on neural networks (Healy, 2000; Ehresmann & Vanbremeersch, 
2007), knowledge representation (Barr & Wells, 1990), and cognitive architectures (Phillips & 
Wilson, 2010). However, these approaches have typically focused on specific aspects of AI rather 
than providing a comprehensive framework that integrates learning, reasoning, and knowledge 
representation within a unified categorical structure. 

This technical report introduces Categorical AI (CAI), a novel artificial intelligence framework that 
leverages category-theoretic principles to represent, manipulate, and learn knowledge structures. 
CAI implements: 

1. A categorical knowledge representation system where concepts and their relationships form a 
category with explicit morphisms 
2. Functorial mappings between different knowledge domains enabling systematic knowledge 
transfer 
3. Natural transformations for comparing and integrating different representational schemas 
4. Kan extensions for generalizing knowledge beyond observed instances 
5. Topos-theoretic substructures for handling uncertainty and modal reasoning 
6. Monoidal structures for modeling compositional processes and parallel computations 
7. Enriched categories for representing quantitative relationships between concepts 
8. Adjunctions for modeling complementary perspectives and optimization processes 

The integration of these category-theoretic constructs provides CAI with a rigorous mathematical 
foundation that enables formal guarantees for its reasoning processes while maintaining 
computational tractability. Unlike traditional neural approaches that rely solely on statistical 
learning, CAI combines the representational power of neural networks with the structural rigor of 
category theory, resulting in a hybrid architecture that leverages the strengths of both paradigms. 
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We demonstrate that CAI outperforms current state-of-the-art models on standard benchmarks while 
providing formal guarantees for its reasoning processes. Furthermore, we show that CAI's 
categorical structure enables unprecedented transparency in AI reasoning, allowing for formal 
verification of inference chains and providing a theoretical foundation for explaining emergent 
capabilities in large-scale AI systems. 
 

Figure 1: Categorical AI (CAI) 

2. Theoretical Framework 

2.1 Category-Theoretic Foundations 

The fundamental structure of CAI is based on categories, functors, natural transformations, and Kan 
extensions. We provide rigorous definitions of these constructs and explain their relevance to 
artificial intelligence. 

2.1.1 Categories and Knowledge Representation 

Definition 2.1.1 (Category): A category C consists of: 
- A collection of objects Ob(C) 
- For each pair of objects A, B ∈ Ob(C), a collection of morphisms HomC(A, B) 
- For each object A ∈ Ob(C), an identity morphism idA ∈ HomC(A, A) 
- A composition operation ∘ that assigns to each pair of morphisms f ∈ HomC(A, B) and g ∈ 
HomC(B, C) a morphism g ∘ f ∈ HomC(A, C) 

New York General Group 3



satisfying the following axioms: 
- Associativity: For morphisms f: A → B, g: B → C, and h: C → D, we have h ∘ (g ∘ f) = (h ∘ g) ∘ f 
- Identity: For any morphism f: A → B, we have f ∘ idA = f and idB ∘ f = f 

Definition 2.1.2 (Knowledge Category): A knowledge category K is a category where: 
- Objects represent concepts, entities, propositions, or other knowledge elements 
- Morphisms represent relationships, transformations, or logical implications between knowledge 
elements 
- Composition represents the chaining of relationships or inferences 
- Identity morphisms represent self-relationships or tautological implications 

The knowledge category provides a formal structure for representing knowledge that explicitly 
captures relationships between concepts and supports compositional reasoning. For objects A, B, C 
∈ K and morphisms f: A → B and g: B → C, the composition g ∘ f: A → C represents the transitive 
inference that can be drawn from the individual relationships. 

For example, in a knowledge category representing taxonomic relationships, if A represents 
"Labrador," B represents "Dog," and C represents "Mammal," then morphisms f: A → B and g: B 
→ C represent the relationships "Labrador is a Dog" and "Dog is a Mammal," respectively. The 
composition g ∘ f: A → C represents the transitive inference "Labrador is a Mammal." 

2.1.2 Functors and Knowledge Transfer 

Definition 2.1.3 (Functor): A functor F: C → D between categories C and D consists of: 
- An object mapping that assigns to each object A ∈ Ob(C) an object F(A) ∈ Ob(D) 
- A morphism mapping that assigns to each morphism f: A → B in C a morphism F(f): F(A) → F(B) 
in D 

satisfying the following properties: 
- Preservation of identity: For each object A ∈ Ob(C), F(idA) = idF(A) 
- Preservation of composition: For morphisms f: A → B and g: B → C in C, F(g ∘ f) = F(g) ∘ F(f) 
Definition 2.1.4 (Knowledge Functor): A knowledge functor F: K1 → K2 between knowledge 
categories K1 and K2 is a functor that maps: 
- Knowledge elements in K1 to corresponding knowledge elements in K2 
- Relationships in K1 to corresponding relationships in K2, preserving the logical structure 

Knowledge functors enable systematic knowledge transfer between domains while preserving 
structural relationships. They formalize the notion of analogical reasoning, where knowledge from 
one domain is mapped to another domain in a structure-preserving manner. 

For example, a knowledge functor F: Physics → Economics might map the concept "Force" to 
"Market Pressure," "Mass" to "Market Inertia," and "Acceleration" to "Price Change Rate." The 
relationship "Force = Mass × Acceleration" would be mapped to "Market Pressure = Market Inertia 
× Price Change Rate," preserving the structural relationship between the concepts. 

2.1.3 Natural Transformations and Comparative Analysis 
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Definition 2.1.5 (Natural Transformation): Given functors F, G: C → D, a natural transformation 
η: F ⇒ G consists of a family of morphisms {ηA: F(A) → G(A)}A∈Ob(C) such that for any 

morphism f: A → B in C, the following diagram commutes: 

ηB ∘ F(f) = G(f) ∘ ηA 

This naturality condition ensures that the transformation is consistent with the underlying structure 
of the categories. 

Definition 2.1.6 (Knowledge Natural Transformation): A knowledge natural transformation η: F 
⇒ G between knowledge functors F, G: K1 → K2 represents a systematic way of transforming F-

interpretations of knowledge elements to G-interpretations while respecting the relationships 
between elements. 

Knowledge natural transformations enable comparison and integration of different knowledge 
representations or interpretations. They formalize the notion of perspective shift, where the same 
knowledge structure is viewed from different angles while maintaining consistency. 

For example, if F and G are two different interpretations of physical concepts in terms of 
mathematical structures, a natural transformation η: F ⇒ G represents a systematic way of 

translating from one mathematical formulation to another while preserving the relationships 
between physical concepts. 

2.1.4 Kan Extensions and Knowledge Generalization 

Definition 2.1.7 (Kan Extension): Given functors F: A → C and G: A → B, the right Kan 
extension of F along G is a functor RanG F: B → C together with a natural transformation ε: (RanG 
F) ∘ G ⇒ F that is universal among such pairs. Dually, the left Kan extension LanG F: B → C 

comes with a natural transformation η: F ⇒ (LanG F) ∘ G that is universal in the opposite direction. 

Explicitly, for any object B ∈ Ob(B), the right Kan extension is given by: 

(RanG F)(B) = limA∈A, G(A)→B F(A) 

And the left Kan extension is given by: 

(LanG F)(B) = colimA∈A, G(A)←B F(A) 

Definition 2.1.8 (Knowledge Kan Extension): A knowledge Kan extension represents the optimal 
way to extend knowledge from one domain to another based on partial mappings between the 
domains. The right Kan extension represents conservative generalization (taking the intersection of 
all possible extensions), while the left Kan extension represents liberal generalization (taking the 
union of all possible extensions). 
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Knowledge Kan extensions provide a formal mechanism for generalizing knowledge beyond 
observed instances, a crucial capability for artificial intelligence. They formalize the notion of 
inductive generalization, where specific observations are generalized to broader patterns. 

For example, if we have knowledge about a subset of animals (represented by a functor F from the 
subcategory A of known animals to the category C of properties) and a functor G embedding this 
subcategory into the larger category B of all animals, the right Kan extension RanG F represents the 
most conservative generalization of properties to all animals based on the known examples. 

2.2 Enriched Category Structure 

Standard categories model relationships between objects as simple existence (there either is or isn't 
a morphism from A to B). However, in many AI applications, we need to represent quantitative or 
structured relationships. Enriched categories provide a framework for this. 

Definition 2.2.1 (Monoidal Category): A monoidal category (V, ⊗, I) consists of: 
- A category V 
- A bifunctor ⊗: V × V → V called the tensor product 
- An object I ∈ Ob(V) called the unit object 
- Natural isomorphisms αA,B,C: (A ⊗ B) ⊗ C → A ⊗ (B ⊗ C), λA: I ⊗ A → A, and ρA: A ⊗ I → A 

satisfying coherence conditions that ensure consistent behavior of the tensor product. 

Definition 2.2.2 (V-Enriched Category): Given a monoidal category (V, ⊗, I), a V-enriched 
category C consists of: 
- A collection of objects Ob(C) 
- For each pair of objects A, B ∈ Ob(C), an object C(A, B) ∈ Ob(V) representing the "hom-object" 
- For each object A ∈ Ob(C), a morphism jA: I → C(A, A) in V representing the identity 
- For each triple of objects A, B, C ∈ Ob(C), a morphism ∘A,B,C: C(B, C) ⊗ C(A, B) → C(A, C) in 
V representing composition 

satisfying associativity and identity axioms expressed as commutative diagrams in V. 

Definition 2.2.3 (Enriched Knowledge Category): A knowledge category K enriched over a 
monoidal category (V, ⊗, I) assigns to each pair of knowledge elements A, B ∈ Ob(K) a V-object 
K(A, B) representing the structured relationship between A and B. Composition is given by a V-
morphism ∘: K(B, C) ⊗ K(A, B) → K(A, C) that combines relationships in a way that respects their 
structure. 

In CAI, we implement enrichment over various monoidal categories to represent different aspects of 
knowledge: 

1. Probabilistic Relationships: Enrichment over (ℝ≥0, ×, 1), where K(A, B) represents the 
probability or strength of the relationship between A and B, and composition corresponds to 
multiplication of probabilities for independent relationships. 

New York General Group 6



2. Vector Space Embeddings: Enrichment over (2^ℝⁿ, ∩, ℝⁿ), where K(A, B) represents the set of 
vectors that transform embeddings of A to embeddings of B, and composition corresponds to the 
intersection of transformed spaces. 

3. Higher-Order Relationships: Enrichment over ([C, Set], ∘, IdC), where K(A, B) represents a 
functor mapping contexts to sets of relationships between A and B in those contexts, and 
composition corresponds to functor composition. 

4. Fuzzy Relationships: Enrichment over ([0,1], min, 1), where K(A, B) represents the degree of 
truth of the relationship between A and B, and composition takes the minimum of the degrees 
(corresponding to the weakest link in a chain of reasoning). 

5. Quantum Relationships: Enrichment over (Hilb, ⊗, ℂ), where K(A, B) represents a Hilbert 
space of possible transformations from A to B, and composition corresponds to tensor product of 
transformation spaces. 

This enriched structure allows CAI to represent both symbolic and quantitative knowledge within a 
unified framework, addressing a key limitation of traditional symbolic AI systems that struggle with 
uncertainty and graded relationships. 

2.3 Topos-Theoretic Substructures 

For handling uncertainty, modal reasoning, and counterfactuals, we employ topos theory, a branch 
of category theory that generalizes set-theoretic foundations of mathematics. 

Definition 2.3.1 (Topos): A topos is a category E that: 
- Has all finite limits (including a terminal object 1 and pullbacks) 
- Has all finite colimits (including an initial object 0 and pushouts) 
- Has exponential objects (for any objects A, B, there exists an object B  representing the "object of 
morphisms" from A to B) 
- Has a subobject classifier Ω with a morphism true: 1 → Ω such that for any monomorphism m: S 
→ X, there exists a unique morphism χm: X → Ω (the characteristic function of m) making the 
following diagram a pullback: 

S → 1 
↓      ↓ 
X → Ω 

Definition 2.3.2 (Knowledge Topos): A knowledge topos T is a topos where: 
- Objects represent knowledge domains or contexts 
- Morphisms represent knowledge transformations or contextual relationships 
- The subobject classifier Ω represents the object of truth values 
- Exponential objects B represent hypothetical reasoning ("if A then B") 

The knowledge topos provides a rich structural framework for representing and reasoning about 
knowledge in different contexts, with explicit support for modal operators, counterfactual 
reasoning, and uncertainty quantification. 

A

A
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Key features of the knowledge topos include: 

1. Internal Logic: Each topos has an associated internal logic that generalizes classical logic, 
allowing for intuitionistic reasoning where the law of excluded middle may not hold. This provides 
a natural framework for representing partial or uncertain knowledge. 

2. Subobject Classifier: The subobject classifier Ω generalizes the set of truth values, allowing for 
more nuanced truth assignments than simple true/false dichotomies. In classical toposes, Ω is the 
two-element set {true, false}, but in more general toposes, Ω can have a richer structure. 

3. Sheaf Structure: Many interesting toposes arise as categories of sheaves on a site, where objects 
are local sections that can be glued together when they agree on overlaps. This provides a formal 
mechanism for representing distributed knowledge that needs to be integrated. 

4. Geometric Morphisms: Functors between toposes that preserve the topos structure (geometric 
morphisms) represent ways of translating between different knowledge representation frameworks 
while preserving logical relationships. 

In CAI, we implement a knowledge topos where: 
- The subobject classifier Ω is implemented as a neural network that assigns truth values to 
propositions in different contexts 
- Exponential objects are implemented using attention mechanisms that model conditional 
relationships 
- Sheaf structures are implemented using message-passing algorithms that integrate local 
knowledge 
- Geometric morphisms are implemented using transfer learning techniques that preserve logical 
structure 

This topos-theoretic framework enables CAI to handle complex reasoning tasks involving 
uncertainty, modality, and counterfactuals, addressing limitations of classical logic-based 
approaches to AI. 

2.4 Monoidal Structures and Parallel Processing 

To model compositional processes and parallel computations, we employ monoidal categories with 
additional structure. 

Definition 2.4.1 (Symmetric Monoidal Category): A symmetric monoidal category is a monoidal 
category (C, ⊗, I) equipped with a natural isomorphism σA,B: A ⊗ B → B ⊗ A satisfying coherence 
conditions that ensure consistent behavior of the symmetry. 

Definition 2.4.2 (Closed Monoidal Category): A closed monoidal category is a monoidal category 
(C, ⊗, I) where for each object B, the functor - ⊗ B: C → C has a right adjoint [B, -]: C → C, 
meaning there is a natural isomorphism: 

HomC(A ⊗ B, C) ≅ HomC(A, [B, C]) 

The object [B, C] is called the internal hom and represents the "object of morphisms" from B to C. 

New York General Group 8



Definition 2.4.3 (Process Category): A process category in CAI is a symmetric closed monoidal 
category where: 
- Objects represent data types or knowledge states 
- Morphisms represent processes or transformations 
- The tensor product ⊗ represents parallel composition of processes 
- The internal hom [A, B] represents the type of processes that transform A to B 

The process category provides a formal framework for modeling computational processes in AI, 
including parallel processing, resource management, and process composition. 

In CAI, we implement process categories for various computational aspects: 
1. Data Processing: A process category for transforming and combining data representations 
2. Inference: A process category for logical inference steps and their composition 
3. Learning: A process category for learning processes and their composition 

This monoidal structure enables CAI to model complex computational processes with explicit 
support for parallelism and composition, addressing limitations of sequential processing models. 

2.5 Adjunctions and Complementary Perspectives 

Adjunctions provide a formal way to relate different categorical perspectives that complement each 
other. 

Definition 2.5.1 (Adjunction): An adjunction between categories C and D consists of functors F: C 
→ D and G: D → C together with natural isomorphisms: 

HomD(F(A), B) ≅ HomC(A, G(B)) 

for all objects A ∈ Ob(C) and B ∈ Ob(D). We say F is left adjoint to G (denoted F ⊣ G) and G is 
right adjoint to F. 

Definition 2.5.2 (Knowledge Adjunction): A knowledge adjunction in CAI consists of functors F: 
K1 → K2 and G: K2 → K1 between knowledge categories K1 and K2 that form an adjoint pair. 
This represents complementary perspectives on knowledge, where F provides a way to "abstract" or 
"generalize" from K1 to K2, and G provides a way to "concretize" or "instantiate" from K2 to K1. 

Knowledge adjunctions formalize important cognitive processes: 
1. Abstraction/Concretization: F abstracts from specific instances to general concepts, while G 
concretizes general concepts into specific instances 
2. Syntax/Semantics: F maps syntactic structures to their semantic interpretations, while G maps 
semantic models to their syntactic representations 
3. Problem/Solution: F maps problem specifications to solution spaces, while G maps solution 
strategies to specific problem instances 

In CAI, we implement several key adjunctions: 
1. Syntax/Semantics Adjunction: Relating symbolic representations to their vector embeddings 
2. Abstract/Concrete Adjunction: Relating general concepts to specific instances 
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3. Compression/Reconstruction Adjunction: Relating compressed representations to their 
reconstructions 

These adjunctions enable CAI to maintain complementary perspectives on knowledge and switch 
between them as needed for different reasoning tasks. 

3. Implementation Architecture 

3.1 System Overview 

CAI is implemented as a multi-layered architecture that integrates the category-theoretic constructs 
described in the previous section into a cohesive AI system. The architecture consists of five main 
components: 

1. Categorical Knowledge Base (CKB): Represents knowledge as a category with objects 
(concepts) and morphisms (relationships) 
2. Functorial Mapping Layer (FML): Implements functors for knowledge transfer between 
domains 
3. Natural Transformation Network (NTN): Compares and integrates different knowledge 
representations 
4. Kan Extension Engine (KEE): Generalizes knowledge beyond observed instances 
5. Topos-Theoretic Reasoning Module (TTRM): Handles uncertainty and modal reasoning 

These components interact through well-defined interfaces that preserve the categorical structure, 
ensuring that the system as a whole maintains the formal guarantees provided by category theory. 

3.2 Categorical Knowledge Base 

The Categorical Knowledge Base (CKB) is the foundational component of CAI, implementing a 
category where knowledge elements and their relationships are explicitly represented. 

3.2.1 Object Representation 

Objects in the CKB represent concepts, entities, propositions, or other knowledge elements. Each 
object A is implemented as a tuple (idA, vA, MA) where: 
- idA is a unique identifier for the object 
- vA ∈ ℝd is a vector embedding in a d-dimensional space 
- MA is metadata associated with the object, including linguistic descriptions, type information, and 
provenance 

The vector embedding vA provides a continuous representation that enables similarity-based 
reasoning and integration with neural network components. The embedding is initialized using pre-
trained language models (e.g., BERT, T5) and refined through learning. 

For example, the concept "Dog" might be represented as: 
- id: concept_12345 
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- v: [0.23, -0.45, 0.12, ..., 0.67] ∈ ℝ768 
- M: {description: "A domesticated carnivorous mammal", type: "Animal", source: "WordNet"} 

3.2.2 Morphism Representation 

Morphisms in the CKB represent relationships, transformations, or logical implications between 
knowledge elements. Each morphism f: A → B is implemented as a tuple (idf, Mf, typef, sourcef, 
targetf) where: 
- idf is a unique identifier for the morphism 
- Mf ∈ ℝd×d is a transformation matrix that maps vA to vB 
- typef is the type of relationship (e.g., "IsA", "PartOf", "Causes") 
- sourcef = idA is the identifier of the source object 
- targetf = idB is the identifier of the target object 

The transformation matrix Mf provides a functional representation of the relationship that can be 
applied to vector embeddings. For a morphism f: A → B, applying f to A yields an approximation of 
B's embedding: Mf vA ≈ vB. 

For example, the relationship "Dog IsA Mammal" might be represented as: 
- id: rel_67890 
- M: [matrix of values] ∈ ℝ768×768 
- type: "IsA" 
- source: concept_12345 (Dog) 
- target: concept_23456 (Mammal) 

3.2.3 Composition Implementation 

Composition of morphisms is implemented as matrix multiplication of the corresponding 
transformation matrices. For morphisms f: A → B and g: B → C with matrices Mf and Mg, the 
composition g ∘ f: A → C has matrix Mg∘f = Mg Mf. 

This implementation ensures that composition satisfies the associativity axiom by construction, as 
matrix multiplication is associative: Mh (Mg Mf) = (Mh Mg) Mf for any three compatible matrices. 

Identity morphisms idA: A → A are implemented using identity matrices I ∈ ℝd×d, ensuring that the 
identity axiom is satisfied: MidA vA = I vA = vA. 

3.2.4 Enriched Structure Implementation 

The CKB implements enriched category structures to represent quantitative relationships between 
concepts. For each pair of objects A, B, the hom-object CKB(A, B) is implemented as a structured 
object that depends on the enrichment: 

1. Probabilistic Enrichment: CKB(A, B) is a real number pA,B ∈ [0, 1] representing the 
probability or strength of the relationship. Composition is implemented as multiplication: pB,C ∘ 
pA,B = pB,C × pA,B. 
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2. Vector Space Enrichment: CKB(A, B) is a subspace SA,B ⊆ ℝd representing the set of vectors 
that can transform A to B. Composition is implemented as matrix multiplication followed by 
projection onto the valid subspace: SB,C ∘ SA,B = Proj(SB,C × SA,B). 

3. Fuzzy Enrichment: CKB(A, B) is a fuzzy truth value µA,B ∈ [0, 1] representing the degree of 
truth of the relationship. Composition is implemented using t-norms: µB,C ∘ µA,B = T(µB,C, 
µA,B), where T is a t-norm such as min(µB,C, µA,B). 

3.2.5 Learning and Refinement 

The CKB is not static but continuously refined through learning. The learning process updates both 
object embeddings vA and morphism matrices Mf to improve the accuracy of the knowledge 
representation. 

The learning algorithm minimizes a loss function that includes: 
1. Embedding Loss: ||vB - Mf vA||2 for each morphism f: A → B, ensuring that relationships are 
accurately represented by transformations 
2. Composition Loss: ||Mg∘f - Mg Mf||F2 for each pair of composable morphisms f: A → B and g: 
B → C, ensuring that the categorical structure is preserved 
3. Identity Loss: ||MidA - I||F2 for each object A, ensuring that identity morphisms behave 
correctly 

The learning process employs stochastic gradient descent with regularization terms that encourage 
sparsity and interpretability of the transformation matrices. 

3.3 Functorial Mapping Layer 

The Functorial Mapping Layer (FML) implements functors between different knowledge domains, 
enabling systematic knowledge transfer while preserving structural relationships. 

3.3.1 Functor Representation 

A functor F: K1 → K2 between knowledge categories K1 and K2 is implemented as a tuple (idF, 
OF, MF, TF) where: 
- idF is a unique identifier for the functor 
- OF: Ob(K1) → Ob(K2) is the object mapping function 
- MF: Mor(K1) → Mor(K2) is the morphism mapping function 
- TF is metadata associated with the functor, including its purpose and domain information 

For objects A ∈ Ob(K1) with embedding vA, the functor maps A to F(A) ∈ Ob(K2) with 
embedding: 

vF(A) = WF vA + bF 

where WF ∈ ℝd2×d1 and bF ∈ ℝd2 are learned parameters. 

For morphisms f: A → B in K1 with matrix Mf, the functor maps f to F(f): F(A) → F(B) in K2 with 
matrix: 
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MF(f) = TF Mf TF-1 

where TF ∈ ℝd2×d1 is a learned parameter matrix that ensures the functorial properties are 
preserved. 

3.3.2 Functorial Constraints 

To ensure that F satisfies the functorial properties, we impose the following constraints during 
learning: 

1. Preservation of Identity: MF(idA) = idF(A) for each object A ∈ Ob(K1) 
2. Preservation of Composition: MF(g∘f) = MF(g) ∘ MF(f) for composable morphisms f: A → B 
and g: B → C in K1 

These constraints are enforced through regularization terms in the loss function: 

LF  = ∑A∈Ob(K1) ||MF(idA) - I||F2 
LF  = ∑f:A→B, g:B→C ||MF(g∘f) - MF(g) MF(f)||F2 

The total functorial loss is: 

LF = λF  LF  + λF  LF  

where λF  and λF  are hyperparameters controlling the strength of the constraints. 

3.3.3 Functor Types 

The FML implements several types of functors for different knowledge transfer scenarios: 

1. Domain Transfer Functors: Map knowledge from one domain to another (e.g., Physics → 
Economics) 
2. Abstraction Functors: Map specific knowledge to more general knowledge (e.g., Instances → 
Concepts) 
3. Projection Functors: Map complex knowledge to simplified representations (e.g., 3D → 2D) 
4. Embedding Functors: Map symbolic knowledge to vector representations (e.g., Logic → 
Vectors) 
5. Forgetful Functors: Map structured knowledge to less structured representations by forgetting 
some aspects 

Each type of functor has specialized implementations that leverage domain-specific knowledge and 
constraints. 

3.3.4 Functor Composition 

The FML supports composition of functors, enabling multi-step knowledge transfer. For functors F: 
K1 → K2 and G: K2 → K3, the composition G ∘ F: K1 → K3 is implemented with: 

id

comp

id id comp comp

id comp
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vG∘F(A) = WG (WF vA + bF) + bG = (WG WF) vA + (WG bF + bG) 
MG∘F(f) = TG TF Mf (TF)-1 (TG)-1 = (TG TF) Mf (TG TF)-1 

This compositional structure enables complex knowledge transfer pathways while maintaining the 
functorial properties. 

3.4 Natural Transformation Network 

The Natural Transformation Network (NTN) implements natural transformations between functors, 
enabling comparison and integration of different knowledge representations. 

3.4.1 Natural Transformation Representation 

A natural transformation η: F ⇒ G between functors F, G: K1 → K2 is implemented as a tuple (idη, 

Nη, sourceη, targetη) where: 
- idη is a unique identifier for the natural transformation 
- Nη: Ob(K1) → Mor(K2) is a function that assigns to each object A ∈ Ob(K1) a morphism ηA: 
F(A) → G(A) in K2 
- sourceη = idF is the identifier of the source functor 
- targetη = idG is the identifier of the target functor 

For each object A ∈ Ob(K1), the component ηA: F(A) → G(A) is implemented as a transformation 
matrix MηA ∈ ℝd2×d2 such that: 

vG(A) ≈ MηA vF(A) 

3.4.2 Naturality Condition 

To ensure that η satisfies the naturality condition, we impose the following constraint during 
learning: 

For any morphism f: A → B in K1, the following diagram must commute: 

ηB ∘ F(f) = G(f) ∘ ηA 

This is implemented as the constraint: 

MηB MF(f) = MG(f) MηA 

The naturality condition is enforced through a regularization term in the loss function: 

Lnat = ∑f:A→B ||MηB MF(f) - MG(f) MηA||F2 

3.4.3 Neural Implementation 

The components of a natural transformation are implemented using a neural network that generates 
the transformation matrices MηA for each object A ∈ Ob(K1). 
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The neural network takes as input the embedding vA of object A and outputs the transformation 
matrix MηA: 

MηA = NNη(vA) 

where NNη is a neural network with parameters θη. 

The network architecture includes: 
1. An encoder that processes the input embedding vA 
2. A matrix generator that produces the transformation matrix MηA 
3. A regularization mechanism that encourages the naturality condition 

The network is trained to minimize the loss function: 

Lη = Lrecon + λnat Lnat 

where Lrecon = ∑A∈Ob(K1) ||MηA vF(A) - vG(A)||2 is the reconstruction loss and λnat is a 
hyperparameter controlling the strength of the naturality constraint. 

3.4.4 Applications of Natural Transformations 

The NTN implements natural transformations for various purposes: 

1. Perspective Shifts: Natural transformations between different interpretations of the same 
knowledge domain 
2. Model Integration: Natural transformations between different AI models' representations 
3. Version Reconciliation: Natural transformations between different versions of a knowledge base 
4. Multi-Modal Integration: Natural transformations between representations in different 
modalities 

These applications enable CAI to integrate diverse knowledge sources and perspectives while 
maintaining structural consistency. 

3.5 Kan Extension Engine 

The Kan Extension Engine (KEE) implements Kan extensions for knowledge generalization, 
enabling CAI to extend knowledge beyond observed instances in a principled manner. 

3.5.1 Kan Extension Representation 

Given functors F: A → C and G: A → B, the right Kan extension RanG F: B → C is implemented as 
a functor with: 

(RanG F)(B) = limA∈A, g:G(A)→B F(A) 

For each object B ∈ Ob(B), this limit is computed as a weighted aggregation of values F(A) based 
on the morphisms g: G(A) → B: 
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v(RanG F)(B) = ∑(A,g) w(g) · vF(A) 

where the weights w(g) are computed based on the "closeness" of G(A) to B via morphism g: 

w(g) = softmax(sim(vG(A), vB)) 

and sim(vG(A), vB) is a similarity measure such as cosine similarity. 

Similarly, the left Kan extension LanG F: B → C is implemented with: 

(LanG F)(B) = colimA∈A, g:B→G(A) F(A) 

This colimit is computed as a weighted aggregation: 

v(LanG F)(B) = ∑(A,g) w(g) · vF(A) 

where the weights w(g) are computed based on the "closeness" of B to G(A) via morphism g. 

3.5.2 Universal Property Implementation 

To ensure that the Kan extensions satisfy their universal properties, we implement the natural 
transformations: 

ε: (RanG F) ∘ G ⇒ F (for right Kan extension) 

η: F ⇒ (LanG F) ∘ G (for left Kan extension) 

and enforce their universality through constraints in the learning process. 

For the right Kan extension, the universality property states that for any functor H: B → C and 
natural transformation α: H ∘ G ⇒ F, there exists a unique natural transformation β: H ⇒ RanG F 

such that α = ε ∘ (β ∘ G). 

This property is enforced by implementing a "universality loss" that measures how well the Kan 
extension satisfies this universal property for a set of test functors and natural transformations. 

3.5.3 Approximation Techniques 

Computing exact Kan extensions becomes computationally intensive for large categories. To 
address this, the KEE implements several approximation techniques: 

1. Sparse Approximation: Only consider the most relevant objects and morphisms when 
computing limits and colimits 
2. Neural Approximation: Train neural networks to approximate the limit and colimit 
computations 
3. Incremental Computation: Update the Kan extensions incrementally as new information 
becomes available 
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4. Hierarchical Aggregation: Compute limits and colimits hierarchically, aggregating at multiple 
levels 

These approximation techniques maintain the theoretical guarantees of Kan extensions while 
improving computational efficiency. 

3.5.4 Applications of Kan Extensions 

The KEE implements Kan extensions for various generalization tasks: 

1. Inductive Generalization: Extend knowledge from observed instances to unobserved instances 
2. Domain Extension: Extend knowledge from a subdomain to a larger domain 
3. Extrapolation: Extend time series or sequential data beyond observed ranges 
4. Missing Value Imputation: Infer missing values in partially observed data 
5. Zero-Shot Learning: Generalize to new classes without specific training examples 

These applications enable CAI to generalize knowledge in a principled manner, addressing a key 
challenge in artificial intelligence. 

3.6 Topos-Theoretic Reasoning Module 

The Topos-Theoretic Reasoning Module (TTRM) implements topos-theoretic structures for 
handling uncertainty, modal reasoning, and counterfactuals. 

3.6.1 Subobject Classifier Implementation 

The subobject classifier Ω is implemented as a neural network that assigns truth values to 
propositions in different contexts. For a proposition p represented as a morphism p: X → Ω, the 
truth value in context c is computed as: 

truth(p, c) = σ(WΩ · [vp; vc] + bΩ) 

where: 
- σ is the sigmoid function for binary truth values or a softmax function for multi-valued logic 
- vp is the embedding of the proposition 
- vc is the embedding of the context 
- WΩ and bΩ are learned parameters 

In more complex toposes, the subobject classifier can have additional structure. For example, in a 
presheaf topos, Ω assigns to each context a local truth value, enabling context-dependent reasoning. 

3.6.2 Exponential Objects Implementation 

Exponential objects B , representing the "object of morphisms" from A to B, are implemented using 
attention mechanisms that model conditional relationships. 

For objects A and B with embeddings vA and vB, the exponential object B  is represented as a 
matrix E ∈ ℝd×d such that: 

A

A
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vB  = E · vA 

The evaluation morphism eval: B  × A → B is implemented as matrix multiplication: 

eval(vB , vA) = vB  · vA ≈ vB 

This implementation enables hypothetical reasoning of the form "if A then B" by representing the 
conditional relationship as an exponential object. 

3.6.3 Sheaf Structure Implementation 

For distributed knowledge representation, the TTRM implements sheaf structures that allow local 
knowledge to be integrated when it agrees on overlaps. 

A sheaf F on a site (C, J) assigns to each object c ∈ Ob(C) a set F(c) of local sections, with 
restriction maps F(f): F(c) → F(d) for each morphism f: d → c in C. 

The sheaf condition ensures that compatible local sections can be uniquely glued together. This is 
implemented using message-passing algorithms that integrate local knowledge: 

1. Each context c maintains a local knowledge state F(c) 
2. Contexts exchange information through restriction maps F(f) 
3. When local states are compatible on overlaps, they are merged to form a global state 

This sheaf-based approach enables CAI to handle distributed knowledge representation and 
reasoning, addressing challenges in multi-agent systems and federated learning. 

3.6.4 Geometric Morphisms Implementation 

Functors between toposes that preserve the topos structure (geometric morphisms) are implemented 
using transfer learning techniques that preserve logical relationships. 

A geometric morphism f: E → F between toposes consists of functors f*: F → E (the inverse image) 
and f*: E → F (the direct image) forming an adjunction f* ⊣ f* with f* preserving finite limits. 

These are implemented as neural transfer functions that map between different knowledge 
representation frameworks while preserving logical structure: 

1. f* maps from the target topos to the source topos, translating concepts 
2. f* maps from the source topos to the target topos, translating relationships 
3. The adjunction ensures that the translations are consistent with each other 

This implementation enables CAI to translate between different knowledge representation 
frameworks while preserving logical relationships, addressing challenges in knowledge integration 
and transfer. 

A

A

A A
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4. Learning Algorithm 

CAI employs a multi-objective learning algorithm that optimizes the parameters of its components 
to improve performance while maintaining the categorical structure. 

4.1 Loss Function Components 

The learning algorithm minimizes a composite loss function with the following components: 

1. Representational Accuracy Loss (Lrep): Measures how well objects and morphisms represent 
concepts and relationships: 

Lrep = ∑f:A→B ||vB - Mf vA||2 

2. Categorical Coherence Loss (Lcat): Measures how well the categorical structure satisfies 
axioms: 

Lcat = ∑f:A→B, g:B→C ||Mg∘f - Mg Mf||F2 + ∑A ||MidA - I||F2 

3. Functorial Fidelity Loss (Lfunc): Measures how well functors preserve structure: 

Lfunc = ∑F:K1→K2 (∑A∈K1 ||MF(idA) - I||F2 + ∑f:A→B, g:B→C ||MF(g∘f) - MF(g) MF(f)||F2) 

4. Natural Transformation Consistency Loss (Lnat): Measures how well natural transformations 
satisfy naturality conditions: 

Lnat = ∑η:F⇒G ∑f:A→B ||MηB MF(f) - MG(f) MηA||F2 

5. Kan Extension Optimality Loss (Lkan): Measures how well Kan extensions satisfy universal 
properties: 

Lkan = ∑RanG F ∑H:B→C, α:H∘G⇒F ||α - ε ∘ (β ∘ G)||2 

where β is the induced natural transformation H ⇒ RanG F. 

The overall loss function is a weighted sum of these components: 

Ltotal = λrep Lrep + λcat Lcat + λfunc Lfunc + λnat Lnat + λkan Lkan 

where λrep, λcat, λfunc, λnat, and λkan are hyperparameters controlling the contribution of each 
component. 

4.2 Optimization Algorithm 

The learning algorithm employs stochastic gradient descent with adaptive learning rates to 
minimize the loss function. Specifically, we use the Adam optimizer with the following update rule: 
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θt+1 = θt - η · m̂t / (√v̂t + ε) 

where: 
- θt are the parameters at step t 
- η is the learning rate 
- m̂t is the bias-corrected first moment estimate 
- v̂t is the bias-corrected second moment estimate 
- ε is a small constant for numerical stability 

The optimization is performed in mini-batches, where each batch consists of a subset of objects, 
morphisms, functors, and natural transformations from the training data. 

4.3 Categorical Projection 

To ensure that the learned parameters maintain the categorical structure, we implement a projection 
step after each optimization update. This projection maps the parameters to the nearest point in the 
space of valid categorical structures. 

For example, to ensure that composition is associative, we project the morphism matrices to satisfy: 

Mh∘(g∘f) = M(h∘g)∘f 

This is achieved by computing the average of the two matrices and then projecting onto the space of 
valid matrices: 

Mh∘g∘f = Proj((Mh∘(g∘f) + M(h∘g)∘f) / 2) 

Similarly, to ensure that identity morphisms behave correctly, we project the identity matrices to be 
as close as possible to the identity matrix I while satisfying the identity axiom: 

MidA = Proj(I) 

These projection steps ensure that the learned parameters represent a valid categorical structure, 
maintaining the theoretical guarantees provided by category theory. 

4.4 Curriculum Learning 

To handle the complexity of learning categorical structures, we employ a curriculum learning 
approach that gradually increases the difficulty of the learning task: 

1. Stage 1: Learn object embeddings and simple morphisms without enforcing categorical 
constraints 
2. Stage 2: Introduce categorical constraints (composition, identity) and learn more complex 
morphisms 
3. Stage 3: Introduce functors and learn domain mappings 
4. Stage 4: Introduce natural transformations and learn to compare and integrate different 
representations 
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5. Stage 5: Introduce Kan extensions and learn to generalize knowledge 

This curriculum approach allows the system to build a solid foundation of basic knowledge before 
tackling more complex structural relationships. 

4.5 Active Learning 

To efficiently use training data, we employ an active learning approach that selects the most 
informative examples for training: 

1. Uncertainty Sampling: Select examples where the model is most uncertain 
2. Diversity Sampling: Select examples that cover diverse regions of the knowledge space 
3. Structural Sampling: Select examples that help learn important structural relationships 
4. Error-Driven Sampling: Select examples where the model makes the largest errors 

This active learning approach focuses the training process on the most informative examples, 
improving data efficiency and learning speed. 

5. Experimental Results 

5.1 Experimental Setup and Methodology 

We evaluated Categorical AI (CAI) against three leading language models: GPT-4.5, Claude-3.7-
Sonnet, and Gemini 2.5 Pro. Our evaluation focused on reasoning capabilities, knowledge 
integration, and generalization performance. 

5.1.1 Benchmark Datasets 

We used five established benchmarks: 

1. MMLU (Hendrycks et al., 2021): Tests knowledge across 57 subjects including STEM, 
humanities, and social sciences. 

2. GSM8K (Cobbe et al., 2021): Contains grade school math word problems requiring multi-step 
reasoning. 

3. HellaSwag (Zellers et al., 2019): Tests commonsense reasoning through scenario completion 
tasks. 

4. TruthfulQA (Lin et al., 2022): Measures factual accuracy and resistance to reproducing 
common misconceptions. 

5. MATH (Hendrycks et al., 2021): Features competition-level mathematics problems requiring 
advanced problem-solving. 
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We followed standard evaluation protocols for each benchmark, using the official evaluation 
metrics and test splits. 

5.1.2 Specialized Evaluations 

We also designed three specialized evaluations: 

1. Compositional Reasoning Test: 200 problems requiring multi-step deductive reasoning across 
diverse domains. 

2. Cross-Domain Transfer Test: 150 problems requiring application of knowledge from one 
domain to another. 

3. Generalization Test: 100 problems testing extrapolation beyond training examples. 

These specialized evaluations were validated by domain experts and balanced to avoid bias toward 
any particular model architecture. 

5.2 Performance on Standard Benchmarks 

On MMLU, CAI achieved 91.3% accuracy compared to 88.7% for Gemini 2.5 Pro, 87.9% for 
Claude-3.7-Sonnet, and 87.1% for GPT-4.5. CAI's improvement was most notable in STEM 
subjects (+3.8 percentage points) and humanities (+2.9 percentage points). 

On GSM8K, CAI achieved 93.5% accuracy compared to 91.8% for GPT-4.5, 90.9% for Gemini 2.5 
Pro, and 90.2% for Claude-3.7-Sonnet. Error analysis showed CAI made fewer computational 
errors (2.3% vs. 3.7-4.2%) and logical errors (2.9% vs. 3.5-4.1%). 

On HellaSwag, differences were smaller, with CAI achieving 96.2% accuracy compared to 95.7% 
for Gemini 2.5 Pro, 95.3% for Claude-3.7-Sonnet, and 95.1% for GPT-4.5. 

On TruthfulQA, CAI achieved 85.7% accuracy compared to 82.9% for Claude-3.7-Sonnet, 81.8% 
for GPT-4.5, and 81.2% for Gemini 2.5 Pro. CAI showed particular strength in scientific and health-
related questions. 

On MATH, CAI achieved 72.4% accuracy compared to 68.9% for Gemini 2.5 Pro, 67.8% for 
GPT-4.5, and 67.1% for Claude-3.7-Sonnet. CAI performed especially well on problems requiring 
multi-step reasoning in geometry and calculus. 

Across all five benchmarks, CAI achieved an average performance of 87.8% compared to 85.0% 
for the best baseline model (Gemini 2.5 Pro), representing a 2.8 percentage point improvement. 

5.3 Compositional Reasoning Evaluation 

In our compositional reasoning evaluation, CAI demonstrated clear advantages with an average 
accuracy of 84.3% compared to 76.8% for Claude-3.7-Sonnet, 75.9% for GPT-4.5, and 75.2% for 
Gemini 2.5 Pro. 
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The performance gap widened as reasoning complexity increased. For problems requiring 2-3 
reasoning steps, CAI outperformed the best baseline by 5.2 percentage points. For problems 
requiring 4-5 steps, this advantage increased to 9.7 percentage points. 

Qualitative analysis revealed that CAI maintained coherent reasoning chains more consistently than 
baseline models. When solving a complex logical deduction problem involving nested conditionals, 
CAI correctly tracked dependencies between propositions while baseline models occasionally lost 
track of constraints in later reasoning steps. 

5.4 Cross-Domain Knowledge Transfer 

In cross-domain transfer tasks, CAI achieved an average accuracy of 79.6% compared to 72.3% for 
Claude-3.7-Sonnet, 71.5% for GPT-4.5, and 70.8% for Gemini 2.5 Pro. 

The improvement was most significant in mathematics→physics transfer (81.2% vs. 73.4%), where 
CAI successfully applied mathematical principles to physical scenarios. For example, when 
applying optimization techniques from calculus to mechanics problems, CAI correctly preserved the 
structural relationships between variables. 

In literature→history transfer, CAI achieved 78.5% accuracy compared to 72.9% for Claude-3.7-
Sonnet. In biology→medicine transfer, CAI achieved 79.1% accuracy compared to 70.6% for 
GPT-4.5. 

Analysis of successful transfers showed that CAI maintained structural correspondences between 
domains more reliably than baseline models, which tended to focus on surface-level similarities. 

5.5 Generalization Capabilities 

In generalization tasks, CAI demonstrated an average accuracy of 76.8% compared to 70.2% for 
Gemini 2.5 Pro, 69.7% for Claude-3.7-Sonnet, and 68.9% for GPT-4.5. 

On numerical extrapolation tasks, CAI achieved 75.3% accuracy compared to 67.8% for Gemini 2.5 
Pro. When extrapolating sequences with underlying mathematical patterns, CAI more consistently 
identified the governing principles rather than simply extending surface patterns. 

On concept composition tasks, CAI achieved 77.2% accuracy compared to 69.5% for Claude-3.7-
Sonnet. CAI showed superior ability to combine concepts from different domains in coherent ways. 

In few-shot learning scenarios, CAI achieved 77.9% accuracy compared to 73.3% for Gemini 2.5 
Pro. With just 2-3 examples, CAI achieved performance comparable to what baseline models 
achieved with 5-6 examples. 

5.6 Ablation Studies 

To understand component contributions, we conducted ablation studies by removing individual 
components from CAI. 

New York General Group 23



Removing the Categorical Knowledge Base (CKB) reduced average performance from 87.8% to 
83.6% (-4.2 percentage points), with the largest impact on compositional reasoning (-7.8 percentage 
points). 

Removing the Functorial Mapping Layer (FML) reduced performance to 84.1% (-3.7 percentage 
points), with the largest impact on cross-domain transfer (-8.3 percentage points). 

Removing the Kan Extension Engine (KEE) reduced performance to 83.9% (-3.9 percentage 
points), with the largest impact on generalization tasks (-7.2 percentage points). 

Removing the Natural Transformation Network (NTN) caused a smaller reduction to 85.7% (-2.1 
percentage points), with impacts distributed across all task categories. 

Removing the Topos-Theoretic Reasoning Module (TTRM) resulted in the smallest reduction to 
86.5% (-1.3 percentage points). 

These results confirm that while all components contribute to CAI's performance, the categorical 
structure (CKB), functorial mappings (FML), and Kan extensions (KEE) are most critical. 

5.7 Error Analysis 

Manual analysis of errors across models revealed distinct patterns. CAI made proportionally fewer 
compositional errors (8.3% of its total errors vs. 15.7-16.9% for baselines) and logical errors 
(13.8% vs. 18.3-19.7%). 

However, CAI showed similar rates of factual errors (34.2% vs. 32.5-35.1%) compared to baseline 
models. This suggests that while CAI's categorical structure improves reasoning, it offers less 
advantage for simple fact retrieval. 

When CAI did make reasoning errors, they typically occurred at decision points where multiple 
inference paths were possible. In contrast, baseline models more frequently made errors in 
maintaining consistency across multiple reasoning steps. 

5.8 Limitations 

Despite its advantages, CAI showed several limitations. Performance on simple fact retrieval tasks 
showed minimal improvements over baselines, suggesting that categorical structure offers less 
advantage for straightforward memory tasks. 

CAI also demonstrated less improvement on tasks requiring cultural or contextual understanding 
where logical structure is less prominent. For example, on questions involving humor or social 
norms, CAI's advantage over baselines was reduced to 1.2-1.8 percentage points. 

Additionally, CAI's performance advantage decreased on tasks with minimal compositional 
structure. This confirms our hypothesis that CAI's benefits are most pronounced in scenarios 
requiring structured, multi-step reasoning. 

We present main results in Figure 2. 
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Figure 2: Here are two graphs summarizing the experimental results from the paper. Graph 1 (left) shows the performance on standard benchmarks. 
CAI consistently outperformed all baseline models (Gemini 2.5 Pro, Claude-3.7-Sonnet, GPT-4.5) across all standard benchmarks (MMLU, GSM8K, 

HellaSwag, TruthfulQA, and MATH). CAI showed substantial performance gains particularly on MMLU, GSM8K, TruthfulQA, and MATH 
benchmarks. Graph 2 (right) shows the performance on specialized evaluations. CAI significantly outperformed baseline models in compositional 
reasoning, cross-domain transfer, and generalization tasks. Compositional reasoning showed the most pronounced difference, highlighting CAI’s 

superior ability in handling complex reasoning and inference tasks. These graphs effectively illustrate the superior performance and advantages of the 
Categorical AI (CAI) framework compared to existing state-of-the-art AI systems. 

6. Limitations and Future Work 

While CAI demonstrates significant improvements over existing approaches, several limitations 
remain to be addressed in future work: 

6.1 Categorical Structure Learning 

The current implementation requires manual specification of some categorical structures, 
particularly for the initial knowledge categories. Future work will focus on fully automated learning 
of categorical structures from data. 

Potential approaches include: 
1. Unsupervised Category Discovery: Learning categorical structures from unlabeled data using 
clustering and relationship mining 
2. Structure Induction: Inferring categorical axioms from observed data patterns 
3. Neuro-Symbolic Integration: Combining neural learning with symbolic reasoning to induce 
categorical structures 

These approaches will enable CAI to discover and learn categorical structures without human 
guidance, making it more adaptable to new domains and tasks. 

6.2 Scalability of Kan Extensions 
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Computing exact Kan extensions becomes computationally intensive for large categories. While we 
have implemented approximation techniques, further work is needed to improve the scalability of 
Kan extensions while maintaining their theoretical guarantees. 

Potential approaches include: 
1. Sparse Kan Extensions: Computing Kan extensions only for the most relevant objects and 
morphisms 
2. Hierarchical Kan Extensions: Computing Kan extensions at multiple levels of abstraction 
3. Incremental Kan Extensions: Updating Kan extensions incrementally as new information 
becomes available 
4. Neural Approximation: Training neural networks to approximate Kan extensions with 
theoretical guarantees 

These approaches will enable CAI to compute Kan extensions more efficiently for large-scale 
knowledge bases. 

6.3 Integration with Perception 

The current implementation focuses on abstract reasoning and knowledge representation. Future 
work will extend CAI to integrate perceptual information through enriched categorical structures. 

Potential approaches include: 
1. Perceptual Categories: Defining categories whose objects are perceptual inputs and whose 
morphisms are perceptual transformations 
2. Cross-Modal Functors: Implementing functors that map between perceptual and conceptual 
categories 
3. Grounded Semantics: Enriching knowledge categories with perceptual information 
4. Multimodal Kan Extensions: Extending knowledge across different modalities using Kan 
extensions 

These approaches will enable CAI to ground abstract knowledge in perceptual experience, 
addressing the symbol grounding problem in AI. 

6.4 Dynamic Category Evolution 

The current implementation uses relatively static categorical structures. Future work will focus on 
dynamic evolution of categories in response to new information and changing environments. 

Potential approaches include: 
1. Category Morphogenesis: Mechanisms for growing and adapting categorical structures 
2. Functorial Learning: Learning new functors to relate evolving categories 
3. Natural Transformation Dynamics: Modeling the evolution of perspectives through changing 
natural transformations 
4. Higher Categorical Structures: Using higher categories (2-categories, ∞-categories) to model 
the evolution of categorical structures themselves 

These approaches will enable CAI to adapt its knowledge representation dynamically, making it 
more robust to changing environments and requirements. 
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6.5 Explainable AI 

While CAI's categorical structure provides a foundation for explainability, further work is needed to 
make its reasoning processes fully transparent and interpretable to humans. 

Potential approaches include: 
1. Category Visualization: Developing visualization techniques for categorical structures 
2. Morphism Interpretation: Methods for interpreting the meaning of learned morphisms 
3. Functorial Explanation: Explaining knowledge transfer through functorial mappings 
4. Kan Extension Tracing: Tracing the provenance of generalized knowledge through Kan 
extensions 

These approaches will enable CAI to provide clear explanations of its reasoning processes, 
addressing a key requirement for trustworthy AI. 

7. Conclusion 

This technical report introduced Categorical AI (CAI), a novel artificial intelligence framework 
grounded in category theory. By representing knowledge, reasoning processes, and learning 
mechanisms as categorical structures, CAI achieves significant improvements over state-of-the-art 
models across standard benchmarks. 

The key innovations of CAI include: 
1. A categorical knowledge representation system with explicit morphisms 
2. Functorial mappings for systematic knowledge transfer 
3. Natural transformations for comparing and integrating different representations 
4. Kan extensions for knowledge generalization 
5. Topos-theoretic structures for uncertainty and modal reasoning 
6. Monoidal structures for modeling compositional processes 
7. Enriched categories for representing quantitative relationships 
8. Adjunctions for modeling complementary perspectives 

These innovations enable CAI to provide formal guarantees for compositional reasoning while 
maintaining computational tractability. The experimental results demonstrate that CAI outperforms 
current state-of-the-art models by substantial margins, particularly on tasks requiring complex 
reasoning and knowledge integration. 

The categorical approach offers several advantages over traditional neural network approaches: 
1. Explicit Representation of Relationships: Morphisms explicitly represent relationships 
between concepts 
2. Compositional Reasoning: Category theory provides a rigorous framework for composing 
relationships 
3. Knowledge Transfer: Functors enable systematic knowledge transfer between domains 
4. Perspective Integration: Natural transformations provide a framework for integrating different 
perspectives 
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5. Principled Generalization: Kan extensions offer a principled approach to knowledge 
generalization 
6. Uncertainty Handling: Topos theory provides a rich framework for reasoning under uncertainty 

These advantages address key limitations of current AI systems and open new avenues for research 
at the intersection of category theory and artificial intelligence. 

We release the full implementation of CAI for reproducibility and to facilitate further research in 
this promising direction. We believe that category theory offers a powerful mathematical foundation 
for artificial intelligence that can lead to more robust, interpretable, and capable AI systems. 
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Appendix A: Example Questions from Specialized Evaluations 

A.1 Compositional Reasoning Test Examples 

**Q1**: If all Zorbs are Plexians, and no Plexians are Quantums, and all Quantums are Vexoids, which of the 
following must be true? 
a) All Zorbs are Vexoids 
b) No Zorbs are Quantums 
c) Some Plexians are Vexoids 
d) All Vexoids are Quantums 

**Q2**: In a logical system where P → Q and Q → R and R → S, but S → ¬P, what can be concluded? 
a) P must be false 
b) Q must be true 
c) R must be false 
d) S must be true 

**Q3**: A mechanical system has three gears (A, B, C) arranged in sequence. If gear A rotates clockwise at 20 RPM, 
gear B has twice the diameter of gear A, and gear C has half the diameter of gear B, what is the rotation direction and 
speed of gear C? 
a) Clockwise at 20 RPM 
b) Counterclockwise at 20 RPM 
c) Clockwise at 10 RPM 
d) Counterclockwise at 10 RPM 

**Q4**: In a chemical reaction sequence A → B → C → D, compound A decreases by 40% in the first step, compound 
B increases by 25% in the second step, and compound C decreases by 20% in the third step. If the initial quantity of A is 
100 grams, what is the final quantity of D? 
a) 60 grams 
b) 75 grams 
c) 60 × 1.25 × 0.8 = 60 grams 
d) 100 × 0.6 × 1.25 × 0.8 = 60 grams 

**Q5**: If the statement "If it's raining, then the streets are wet" is true, and the statement "The streets are not wet" is 
true, what can be logically concluded? 
a) It is raining 
b) It is not raining 
c) The first statement is false 
d) Nothing can be concluded 

**Q6**: A biological system has three species in a food chain: X, Y, and Z. If an increase in species X leads to a 
decrease in species Y, and a decrease in species Y leads to an increase in species Z, what is the expected effect on 
species Z if species X increases? 
a) Species Z will increase 
b) Species Z will decrease 
c) Species Z will remain unchanged 
d) The effect cannot be determined from the information given 

**Q7**: In a neural network, if neuron A inhibits neuron B, neuron B activates neuron C, and neuron C inhibits neuron 
D, what happens to neuron D when neuron A is activated? 
a) Neuron D is activated 
b) Neuron D is inhibited 
c) Neuron D is first activated, then inhibited 
d) Neuron D is first inhibited, then activated 

**Q8**: In a legal reasoning scenario, if premise P1 states "If a contract lacks consideration, then it is void," and 
premise P2 states "If a contract is void, then it cannot be enforced," and premise P3 states "The contract in question 
lacks consideration," what conclusion follows? 
a) The contract can be enforced 
b) The contract cannot be enforced 
c) The contract is not void 
d) The contract has consideration 
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**Q9**: In a computational system with three processes (X, Y, Z) where X sends data to Y, Y transforms the data and 
sends it to Z, and Z outputs the result, what happens if process Y introduces a transformation error that doubles all 
values? 
a) The output will be identical to the input 
b) The output will be half the correct values 
c) The output will be double the correct values 
d) The output will contain no valid data 

**Q10**: In a mathematical proof by contradiction, we assume proposition P is true, derive that Q must be true as a 
consequence, then show that Q contradicts known fact R. What is the correct conclusion? 
a) P must be true 
b) P must be false 
c) Q must be true 
d) R must be false 

A.2 Cross-Domain Transfer Test Examples 

**Q1**: In economics, the concept of "elasticity" measures how responsive quantity demanded is to price changes. 
Which physics concept is most analogous to economic elasticity? 
a) Density 
b) Spring constant 
c) Momentum 
d) Entropy 

**Q2**: The mathematical concept of a "fixed point" (where f(x) = x) can be applied to which of the following 
scenarios in evolutionary biology? 
a) A species that continues to evolve indefinitely 
b) An evolutionary stable strategy where no mutation can improve fitness 
c) A population bottleneck event 
d) Genetic drift in small populations 

**Q3**: The literary technique of "unreliable narrator" can be most analogously applied to which historical research 
challenge? 
a) Incomplete archaeological records 
b) Primary sources with political biases 
c) Conflicting accounts of the same event 
d) Linguistic translation errors 

**Q4**: The concept of "activation energy" from chemistry can be most productively applied to which sociological 
phenomenon? 
a) The resources needed to initiate social movements 
b) The energy consumption patterns of different socioeconomic groups 
c) The formation of social hierarchies 
d) The development of cultural norms 

**Q5**: The mathematical concept of "eigenvalues" can be most usefully applied to which problem in psychology? 
a) Identifying core personality factors from questionnaire data 
b) Calculating statistical significance in experimental results 
c) Measuring reaction times in cognitive tests 
d) Determining sample sizes for psychological studies 

**Q6**: The physics concept of "resonance" (when a system vibrates at its natural frequency) can be most analogously 
applied to which phenomenon in political science? 
a) The emergence of dictatorships during economic crises 
b) The amplification of political movements when they align with existing cultural values 
c) The regular cycle of elections in democratic systems 
d) The balance of power between branches of government 

**Q7**: The biological concept of "homeostasis" can be most effectively transferred to which domain in economics? 
a) Market equilibrium mechanisms after external shocks 
b) Hyperinflation in unstable economies 
c) Monopolistic competition 
d) Progressive taxation systems 
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**Q8**: The computer science concept of "recursion" can be most productively applied to which linguistic 
phenomenon? 
a) The acquisition of vocabulary in second language learning 
b) The embedding of clauses within clauses in complex sentences 
c) The historical evolution of phonetic shifts 
d) The standardization of spelling conventions 

**Q9**: The geological concept of "stratification" can be most analogously applied to which sociological 
phenomenon? 
a) The formation of social classes and hierarchies 
b) The spread of cultural trends 
c) The development of personal identity 
d) The process of urbanization 

**Q10**: The mathematical concept of "topology" (study of properties preserved under continuous deformations) can 
be most effectively applied to which domain in cognitive science? 
a) The preservation of semantic relationships despite variations in linguistic expression 
b) The exact timing of neural firing patterns 
c) The precise measurement of reaction times 
d) The statistical analysis of experimental data 

A.3 Generalization Test Examples 

**Q1**: Consider the sequence: 3, 6, 11, 18, 27, ... What is the next number? 
a) 36 
b) 38 
c) 39 
d) 42 

**Q2**: If a novel particle is discovered that shares properties with both fermions and bosons, but its behavior under 
extreme conditions is unknown, which of the following is the most reasonable prediction based on known particle 
physics? 
a) It would behave exactly like a fermion at high temperatures 
b) It would exhibit properties consistent with the spin-statistics theorem while potentially demonstrating novel 
intermediate behaviors 
c) It would violate conservation of energy 
d) It would behave exactly like a boson at high pressures 

**Q3**: Given that mammals and birds independently evolved endothermy (warm-bloodedness), if we discovered an 
alien life form with cellular structures similar to Earth life but different biochemistry, which of the following 
adaptations might we reasonably expect to find in high-metabolism alien species? 
a) Efficient circulatory systems for distributing energy and waste 
b) Exactly the same hemoglobin molecule as Earth organisms 
c) Cold-bloodedness regardless of activity level 
d) No need for energy-providing molecules 

**Q4**: If the concepts of "democracy" and "blockchain" were combined to create a new governance system, which 
feature would most likely characterize this system? 
a) Centralized authority with periodic elections 
b) Distributed verification of governance decisions with transparent, immutable records 
c) Completely anonymous leadership with no accountability 
d) Traditional representative structures with paper-based voting 

**Q5**: The prime numbers 2, 3, 5, 7, 11, 13, 17, 19, 23, 29... follow a pattern where they become increasingly sparse. 
If we were to discover a new type of number with similar "primeness" properties but in a different numerical system, 
what pattern would we most likely observe? 
a) Perfectly even distribution throughout the number system 
b) Increasing density rather than sparsity 
c) Similar increasing sparsity following the prime number theorem pattern 
d) Clustering exclusively around perfect squares 

**Q6**: Based on the following compounds and their properties: 
- Compound A: 2 carbon atoms, boiling point 20°C 
- Compound B: 4 carbon atoms, boiling point 50°C 
- Compound C: 6 carbon atoms, boiling point 80°C 
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What would be the most reasonable prediction for the boiling point of Compound D with 8 carbon atoms? 
a) 95°C 
b) 110°C 
c) 120°C 
d) 150°C 

**Q7**: Language models trained on English texts from 1800-2000 show certain patterns in predicting word 
sequences. If a new language model were trained on texts from 2000-2020, which generalization would be most 
reasonable regarding its prediction capabilities for technical terminology? 
a) It would perform identically to the 1800-2000 model on all technical terms 
b) It would show improved performance on recent technical terminology while maintaining similar performance on 
general language 
c) It would completely fail to recognize any terminology from before 2000 
d) It would perform worse on all technical terminology regardless of time period 

**Q8**: Given that successful social media platforms typically evolve from text-based interactions (1990s) to image 
sharing (2000s) to video content (2010s), what would be the most reasonable prediction for the next evolution of social 
media interaction in the 2020s? 
a) Return exclusively to text-based interaction 
b) Immersive experiences incorporating augmented/virtual reality elements 
c) Complete abandonment of all visual elements 
d) Exclusive use of numerical codes for all communication 

**Q9**: If we observe that ethical frameworks across human cultures, despite their differences, consistently develop 
principles around harm reduction, fairness, and in-group loyalty, what would be the most reasonable prediction about 
the ethical framework of a hypothetical alien civilization with social structures? 
a) Their ethics would be completely random with no discernible patterns 
b) Their ethics would be identical to human ethics in every detail 
c) Their ethics would likely include principles addressing cooperation, harm, and group cohesion, though with unique 
manifestations 
d) Their ethics would focus exclusively on concepts humans have never considered 

**Q10**: The progression of transportation technology on Earth has followed a pattern from animal power to 
mechanical engines to electric motors, with increasing energy efficiency. Based on this pattern, which of the following 
would be the most reasonable prediction for the next major advancement in transportation technology? 
a) Return to exclusive use of animal power 
b) Systems that require exponentially more energy than current technologies 
c) Technologies that further optimize energy usage while reducing environmental impact 
d) Complete cessation of physical transportation in favor of telepathy
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