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Abstract 

Contemporary artificial intelligence confronts critical challenges including algorithmic bias, lack of 
explainability, and verification difficulties that impede its ethical deployment in high-stakes 
domains. This paper introduces the Categorical Harmonization Framework (CHF), a novel 
paradigm that leverages category theory to systematically integrate symbolic and statistical AI 
methodologies. The framework establishes formal verification mechanisms through categorical 
abstractions that preserve semantic integrity across different representational modalities. By 
formalizing the translation between statistical embeddings and symbolic reasoning structures as 
functorial mappings, CHF provides mathematical guarantees for consistency, interpretability, and 
verifiability. We demonstrate the framework's efficacy through implementation in three domains: 
(1) bias detection and mitigation in natural language processing, (2) verifiable knowledge extraction 
from statistical models, and (3) compositional reasoning with uncertainty quantification. 
Experimental results indicate that CHF achieves superior performance in maintaining logical 
consistency while preserving the generalization capabilities of statistical approaches. This 
integration addresses fundamental limitations in current AI systems and advances the development 
of verifiable, ethical, and trustworthy artificial intelligence. 

1. Introduction 

The dichotomy between symbolic and statistical approaches to artificial intelligence has persisted 
since the inception of the field (Minsky, 1991). Symbolic AI emphasizes explicit knowledge 
representation and logical reasoning, providing transparency and verifiability but struggling with 
uncertainty and generalization. Conversely, statistical AI excels in pattern recognition and handling 
uncertainty but operates as opaque "black boxes" with limited explainability and verification 
capabilities (Maruyama, 2021). 

Recent advances in deep learning have demonstrated unprecedented capabilities in domains ranging 
from natural language processing to computer vision. However, these systems face significant 
challenges: 
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1. Machine bias: Statistical models trained on biased data reproduce and potentially amplify 
societal biases (Caliskan et al., 2017). 
2. Lack of explainability: Deep neural networks operate as black boxes, making their decisions 
difficult to interpret or justify (Arrieta et al., 2020). 
3. Verification difficulties: Ensuring that AI systems behave according to specifications remains 
challenging, particularly for safety-critical applications. 

These challenges necessitate a fundamental rethinking of AI architectures to integrate the 
complementary strengths of symbolic and statistical approaches. Category theory, as a mathematical 
language for describing structures and their relationships, offers a promising foundation for this 
integration (Fong & Spivak, 2019). 

Building upon Maruyama's (2022) categorical approach to AI integration, we introduce the 
Categorical Harmonization Framework (CHF), which formalizes the relationships between 
symbolic and statistical representations through categorical constructs. The framework provides: 

1. A rigorous mathematical foundation for translating between symbolic and statistical 
representations 
2. Formal verification mechanisms that preserve semantic integrity across different modalities 
3. Compositional structures that enable reasoning about complex systems 

The CHF addresses the limitations of previous integration attempts by providing a unified 
mathematical framework that preserves the strengths of both symbolic and statistical approaches 
while mitigating their individual weaknesses. Unlike previous approaches that treat integration as 
an engineering problem, CHF establishes a theoretical foundation that guarantees consistency and 
correctness through categorical constructions. 

2. Theoretical Framework 

2.1 Category Theoretic Foundations 

Category theory provides a language for describing mathematical structures and their 
transformations. A category C consists of: 
- Objects (denoted as Ob(C)) 
- Morphisms (arrows) between objects (Hom_C(A, B) for objects A, B) 
- Composition of morphisms (satisfying associativity) 
- Identity morphisms for each object 

Formally, a category C consists of: 
- A collection of objects Ob(C) 
- For each pair of objects A, B ∈ Ob(C), a set Hom_C(A, B) of morphisms from A to B 
- For each triple of objects A, B, C ∈ Ob(C), a composition operation ∘: Hom_C(B, C) × Hom_C(A, 
B) → Hom_C(A, C) satisfying the associativity axiom: for all f ∈ Hom_C(A, B), g ∈ Hom_C(B, C), 
h ∈ Hom_C(C, D), h ∘ (g ∘ f) = (h ∘ g) ∘ f 
- For each object A ∈ Ob(C), an identity morphism id_A ∈ Hom_C(A, A) satisfying the identity 
axiom: for all f ∈ Hom_C(A, B), f ∘ id_A = f and id_B ∘ f = f 
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The power of category theory lies in its ability to formalize relationships between different 
mathematical structures through functors, natural transformations, and adjunctions. 

A functor F: C → D between categories C and D consists of: 
- A mapping F: Ob(C) → Ob(D) that assigns to each object A ∈ Ob(C) an object F(A) ∈ Ob(D) 
- For each pair of objects A, B ∈ Ob(C), a mapping F: Hom_C(A, B) → Hom_D(F(A), F(B)) that 
assigns to each morphism f: A → B in C a morphism F(f): F(A) → F(B) in D 

Functors must preserve composition and identity morphisms: 
- F(g ∘ f) = F(g) ∘ F(f) for all composable morphisms f and g in C 
- F(id_A) = id_{F(A)} for all objects A in C 

Natural transformations formalize the concept of a "natural" mapping between functors. Given 
functors F, G: C → D, a natural transformation η: F ⇒ G consists of: 

- For each object A ∈ Ob(C), a morphism η_A: F(A) → G(A) in D 
- For each morphism f: A → B in C, the naturality square commutes: G(f) ∘ η_A = η_B ∘ F(f) 

Adjunctions capture the concept of "optimal" or "universal" relationships between functors. An 
adjunction between functors F: C → D and G: D → C, denoted F ⊣ G, consists of: 
- Natural transformations η: Id_C ⇒ G ∘ F (the unit) and ε: F ∘ G ⇒ Id_D (the counit) 

- Satisfying the triangle identities: (ε_F(A) ∘ F(η_A)) = id_{F(A)} and (G(ε_B) ∘ η_{G(B)}) = 
id_{G(B)} for all A ∈ Ob(C) and B ∈ Ob(D) 

2.2 Categorical Representation of Knowledge 

We formalize knowledge representation through the following categorical structures: 

Definition 1: A *knowledge category* K consists of: 
- Objects representing concepts or entities 
- Morphisms representing relationships between concepts 
- Composition representing relationship chaining 
- Identity morphisms representing self-relationships 

Formally, a knowledge category K is a category where: 
- Ob(K) is a set of concepts or entities 
- For A, B ∈ Ob(K), Hom_K(A, B) is the set of relationships from A to B 
- Composition ∘: Hom_K(B, C) × Hom_K(A, B) → Hom_K(A, C) represents chaining of 
relationships 
- For each A ∈ Ob(K), id_A ∈ Hom_K(A, A) represents the self-relationship of A 

For our framework, we will define two specific knowledge categories: 

Definition 2: A *symbolic knowledge category* S consists of: 
- Objects representing logical propositions, rules, and knowledge bases 
- Morphisms representing logical entailments and transformations 
- Composition representing chaining of logical inferences 
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- Identity morphisms representing self-entailment 

Definition 3: A *statistical knowledge category* T consists of: 
- Objects representing probability distributions, statistical models, and embeddings 
- Morphisms representing statistical transformations and inferences 
- Composition representing sequential application of statistical transformations 
- Identity morphisms representing identity transformations 

2.3 Harmonization through Functorial Mappings and Adjunctions 

To establish formal relationships between symbolic and statistical representations, we define two 
key functors: 

Definition 4: A *symbolization functor* Sym: T → S maps from the statistical knowledge 
category to the symbolic knowledge category, where: 
- Objects in T (statistical models) map to objects in S (logical propositions) 
- Morphisms in T (statistical transformations) map to morphisms in S (logical entailments) 

Formally, Sym: T → S is a functor where: 
- For each statistical model X ∈ Ob(T), Sym(X) is a logical proposition in S 
- For each statistical transformation f: X → Y in T, Sym(f): Sym(X) → Sym(Y) is a logical 
entailment in S 
- Sym preserves composition: Sym(g ∘ f) = Sym(g) ∘ Sym(f) for all composable transformations f 
and g in T 
- Sym preserves identity: Sym(id_X) = id_{Sym(X)} for all models X in T 

Definition 5: A *statisticalization functor* Stat: S → T maps from the symbolic knowledge 
category to the statistical knowledge category, where: 
- Objects in S (logical propositions) map to objects in T (statistical models) 
- Morphisms in S (logical entailments) map to morphisms in T (statistical transformations) 

Formally, Stat: S → T is a functor where: 
- For each logical proposition P ∈ Ob(S), Stat(P) is a statistical model in T 
- For each logical entailment e: P → Q in S, Stat(e): Stat(P) → Stat(Q) is a statistical transformation 
in T 
- Stat preserves composition: Stat(e' ∘ e) = Stat(e') ∘ Stat(e) for all composable entailments e and e' 
in S 
- Stat preserves identity: Stat(id_P) = id_{Stat(P)} for all propositions P in S 

The core of our framework is the establishment of an adjunction between these functors: 

Theorem 1: There exists an adjunction Stat ⊣ Sym between the statisticalization functor Stat: S → 
T and the symbolization functor Sym: T → S, characterized by a natural isomorphism: 

Hom_T(Stat(P), X) ≅ Hom_S(P, Sym(X)) 

for all P ∈ Ob(S) and X ∈ Ob(T). 
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This adjunction provides a formal mechanism for translating between statistical and symbolic 
representations while preserving semantic relationships. 

Proof: We construct the unit η: Id_S ⇒ Sym ∘ Stat and counit ε: Stat ∘ Sym ⇒ Id_T of the 

adjunction as follows: 

For each proposition P ∈ Ob(S), η_P: P → Sym(Stat(P)) is the morphism that maps P to its 
symbolic representation derived from its statistical embedding. 

For each statistical model X ∈ Ob(T), ε_X: Stat(Sym(X)) → X is the morphism that maps the 
statistical embedding of the symbolic representation of X back to X. 

The triangle identities can be verified by showing that: 
1. (ε_{Stat(P)} ∘ Stat(η_P)) = id_{Stat(P)} for all P ∈ Ob(S) 
2. (Sym(ε_X) ∘ η_{Sym(X)}) = id_{Sym(X)} for all X ∈ Ob(T) 

These identities ensure that the translation between symbolic and statistical representations 
preserves the essential semantic properties of the knowledge. 

Corollary 1: The adjunction Stat ⊣ Sym induces a monad T = Sym ∘ Stat on S and a comonad C = 
Stat ∘ Sym on T, which capture the information preserved when translating between symbolic and 
statistical representations. 

The monad T = Sym ∘ Stat represents the result of translating from symbolic to statistical and back 
to symbolic, while the comonad C = Stat ∘ Sym represents the result of translating from statistical to 
symbolic and back to statistical. These structures formalize the information loss and preservation 
during translation. 

2.4 Verification through Kan Extensions and Distance Metrics 

To ensure the consistency of translations between representations, we utilize Kan extensions: 

Definition 6: Given functors F: A → C and K: A → B, the *right Kan extension* of F along K is a 
functor Ran_K F: B → C together with a natural transformation ε: Ran_K F ∘ K ⇒ F that is 

universal among such natural transformations. 

Formally, the right Kan extension Ran_K F: B → C is characterized by the natural isomorphism: 

Nat(H ∘ K, F) ≅ Nat(H, Ran_K F) 

for all functors H: B → C, where Nat(−, −) denotes the collection of natural transformations. 

Similarly, the left Kan extension Lan_K F: B → C is characterized by the natural isomorphism: 

Nat(F, H ∘ K) ≅ Nat(Lan_K F, H) 

for all functors H: B → C. 
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Kan extensions provide a mechanism for extending functorial mappings while preserving their 
essential properties, enabling verification of consistency across different representations. 

To quantify the degree of consistency and semantic preservation, we introduce distance metrics 
between functors: 

Definition 7: A *functor distance metric* d(F, G) between functors F, G: C → D is a measure of 
how differently F and G map objects and morphisms from C to D.  

For our framework, we define specific distance metrics: 

1. *Semantic Preservation Distance*: For the unit η of the adjunction Stat ⊣ Sym, the distance 
d(η_P, id_P) measures how much semantic information is preserved when translating from 
symbolic to statistical and back to symbolic. 

2. *Statistical Fidelity Distance*: For the counit ε of the adjunction Stat ⊣ Sym, the distance 
d(ε_X, id_X) measures how much statistical information is preserved when translating from 
statistical to symbolic and back to statistical. 

3. *Consistency Distance*: For a knowledge transformation K: A → B and an interpretation 
functor F: A → C, the distance d(Lan_K F, Ran_K F) measures the consistency of the knowledge 
transformation across different representations. 

These distance metrics provide quantitative measures for verifying the quality and consistency of 
translations between symbolic and statistical representations. 

Theorem 2: The consistency of the translation between symbolic and statistical representations can 
be verified through the comparison of the Kan extensions Lan_K F and Ran_K F, where K: A → B 
is a functor representing a knowledge transformation. 

Proof: Let K: A → B be a functor representing a transformation of knowledge (e.g., inference, 
learning). Let F: A → C be a functor representing the interpretation of knowledge in A. The left and 
right Kan extensions Lan_K F and Ran_K F represent the optimal ways to extend F to B while 
preserving its properties. 

The consistency of the translation can be measured by the distance d(Lan_K F, Ran_K F). In the 
ideal case, d(Lan_K F, Ran_K F) = 0, indicating perfect consistency. In practice, we aim to 
minimize this distance to ensure maximal consistency of knowledge transformations across 
different representations. 

For practical implementations, these distance metrics can be computed using domain-specific 
measures such as: 
- Vector space distances (cosine similarity, Euclidean distance) for statistical representations 
- Logical distances (entailment preservation, contradiction detection) for symbolic representations 
- Probabilistic distances (KL-divergence, Wasserstein distance) for probabilistic interpretations 
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The specific computation methods for these distances are detailed in Appendix A.3, providing 
concrete algorithms for measuring semantic preservation and consistency in real-world applications. 

3. Categorical Harmonization Framework 

The Categorical Harmonization Framework (CHF) consists of three primary components: 

1. Representation Categories: Formalization of symbolic and statistical knowledge representations 
2. Harmonization Functors: Mappings between representation categories that preserve semantic 
relationships 
3. Verification Mechanisms: Categorical constructs that ensure consistency and correctness 

3.1 Representation Categories 

3.1.1 Symbolic Knowledge Category (S) 

The symbolic knowledge category formalizes logical reasoning structures: 
- Objects: Logical propositions, rules, and knowledge bases 
- Morphisms: Logical entailments and transformations 
- Composition: Chaining of logical inferences 
- Products: Conjunction of propositions 
- Coproducts: Disjunction of propositions 

Formally, the symbolic knowledge category S is a category where: 
- Ob(S) consists of logical propositions, rules, and knowledge bases 
- For P, Q ∈ Ob(S), Hom_S(P, Q) consists of logical entailments P ⊢ Q and transformations from P 
to Q 
- Composition ∘: Hom_S(Q, R) × Hom_S(P, Q) → Hom_S(P, R) represents the transitivity of 
logical entailment 
- For each P ∈ Ob(S), id_P ∈ Hom_S(P, P) represents the reflexivity of logical entailment P ⊢ P 
- Products P × Q represent the conjunction P ∧ Q 
- Coproducts P + Q represent the disjunction P ∨ Q 

The symbolic knowledge category S is equipped with additional structure: 
- A terminal object ⊤ representing the tautology (always true) 
- An initial object ⊥ representing the contradiction (always false) 
- For each object P, a morphism ¬P: P → ⊥ representing negation 
- For objects P, Q, a morphism P → (P → Q) representing the deduction theorem 

3.1.2 Statistical Knowledge Category (T) 

The statistical knowledge category formalizes statistical models and their relationships: 
- Objects: Probability distributions, statistical models, and embeddings 
- Morphisms: Statistical transformations and inferences 
- Composition: Sequential application of statistical transformations 
- Products: Joint distributions 
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- Coproducts: Mixture distributions 

Formally, the statistical knowledge category T is a category where: 
- Ob(T) consists of probability distributions, statistical models, and embeddings 
- For X, Y ∈ Ob(T), Hom_T(X, Y) consists of statistical transformations and inferences from X to Y 
- Composition ∘: Hom_T(Y, Z) × Hom_T(X, Y) → Hom_T(X, Z) represents the sequential 
application of statistical transformations 
- For each X ∈ Ob(T), id_X ∈ Hom_T(X, X) represents the identity transformation 
- Products X × Y represent joint distributions 
- Coproducts X + Y represent mixture distributions 

The statistical knowledge category T is equipped with additional structure: 
- A terminal object representing the deterministic distribution 
- An initial object representing the uniform distribution 
- For each object X, a morphism X → X representing the Bayesian update 
- For objects X, Y, a morphism X → (X → Y) representing conditional probability 

3.2 Harmonization Functors 

3.2.1 Symbolization Functor (Sym: T → S) 

The symbolization functor extracts symbolic knowledge from statistical representations: 
- Maps statistical models to logical propositions 
- Preserves probabilistic relationships as logical implications 
- Maintains uncertainty through probabilistic logic 

Formally, Sym: T → S is a functor where: 
- For each statistical model X ∈ Ob(T), Sym(X) is a logical proposition in S representing the 
symbolic interpretation of X 
- For each statistical transformation f: X → Y in T, Sym(f): Sym(X) → Sym(Y) is a logical 
entailment in S preserving the semantic relationship 
- Sym preserves composition: Sym(g ∘ f) = Sym(g) ∘ Sym(f) for all composable transformations f 
and g in T 
- Sym preserves identity: Sym(id_X) = id_{Sym(X)} for all models X in T 

The symbolization functor Sym is designed to extract the most reliable symbolic knowledge from 
statistical models. For a probability distribution P, Sym(P) might represent the logical proposition 
corresponding to the most probable outcome or a set of propositions with probabilities above a 
threshold. 

For neural network embeddings, Sym maps the continuous representation to discrete symbolic 
structures by identifying the nearest symbolic concepts in the embedding space or by applying 
clustering techniques to identify meaningful symbolic categories. 

3.2.2 Statisticalization Functor (Stat: S → T) 

The statisticalization functor embeds symbolic knowledge into statistical representations: 
- Maps logical propositions to probability distributions 
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- Preserves logical implications as statistical dependencies 
- Quantifies certainty through probability measures 

Formally, Stat: S → T is a functor where: 
- For each logical proposition P ∈ Ob(S), Stat(P) is a probability distribution in T representing the 
statistical interpretation of P 
- For each logical entailment e: P → Q in S, Stat(e): Stat(P) → Stat(Q) is a statistical transformation 
in T preserving the semantic relationship 
- Stat preserves composition: Stat(e' ∘ e) = Stat(e') ∘ Stat(e) for all composable entailments e and e' 
in S 
- Stat preserves identity: Stat(id_P) = id_{Stat(P)} for all propositions P in S 

The statisticalization functor Stat embeds symbolic knowledge into statistical representations. For a 
logical proposition P, Stat(P) might represent a probability distribution where P has high probability 
or an embedding in a vector space where semantically similar propositions are close in the 
embedding space. 

For logical rules, Stat maps the discrete symbolic structure to continuous statistical representations 
by assigning probabilities to different outcomes or by learning embeddings that capture the 
semantic relationships between concepts. 

3.3 Verification Mechanisms 

3.3.1 Adjunction-Based Verification 

The adjunction Stat ⊣ Sym provides a formal verification mechanism: 
- Natural isomorphism: Hom_T(Stat(A), B) ≅ Hom_S(A, Sym(B)) 
- Unit: η_A: A → Sym(Stat(A)) measures preservation of symbolic knowledge 
- Counit: ε_B: Stat(Sym(B)) → B measures preservation of statistical knowledge 

Formally, the adjunction Stat ⊣ Sym consists of: 
- A natural isomorphism φ: Hom_T(Stat(A), B) ≅ Hom_S(A, Sym(B)) for all A ∈ Ob(S) and B ∈ 
Ob(T) 
- A unit η: Id_S ⇒ Sym ∘ Stat, where for each A ∈ Ob(S), η_A: A → Sym(Stat(A)) measures how 

much symbolic information is preserved when translating to statistical and back to symbolic 
- A counit ε: Stat ∘ Sym ⇒ Id_T, where for each B ∈ Ob(T), ε_B: Stat(Sym(B)) → B measures how 

much statistical information is preserved when translating to symbolic and back to statistical 

The adjunction Stat ⊣ Sym satisfies the triangle identities: 
1. (ε_{Stat(A)} ∘ Stat(η_A)) = id_{Stat(A)} for all A ∈ Ob(S) 
2. (Sym(ε_B) ∘ η_{Sym(B)}) = id_{Sym(B)} for all B ∈ Ob(T) 

These identities ensure that the translation between symbolic and statistical representations 
preserves the essential semantic properties of the knowledge. 
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Verification Metric 1: The quality of the symbolic representation of a statistical model B can be 
measured by the "distance" between B and Stat(Sym(B)), i.e., how close ε_B: Stat(Sym(B)) → B is 
to an isomorphism. 

Verification Metric 2: The quality of the statistical representation of a symbolic knowledge A can 
be measured by the "distance" between A and Sym(Stat(A)), i.e., how close η_A: A → 
Sym(Stat(A)) is to an isomorphism. 

3.3.2 Kan Extension Verification 

Kan extensions provide mechanisms for verifying consistency across different representations: 
- Left Kan extension: Lan_K F verifies that statistical generalizations respect symbolic constraints 
- Right Kan extension: Ran_K F verifies that symbolic abstractions capture statistical patterns 

Formally, given functors F: A → C and K: A → B, the left Kan extension Lan_K F: B → C is 
characterized by the natural isomorphism: 

 

for all functors H: B → C, where Nat(−, −) denotes the collection of natural transformations. 

Similarly, the right Kan extension Ran_K F: B → C is characterized by the natural isomorphism: 

 

for all functors H: B → C. 

In the context of CHF, we use Kan extensions to verify the consistency of knowledge 
transformations across different representations: 

Verification Mechanism 1: Given a knowledge transformation K: A → B and an interpretation 
functor F: A → C, the left Kan extension Lan_K F: B → C represents the optimal way to extend F 
to B while preserving its properties in a "universal" sense. 

Verification Mechanism 2: Given a knowledge transformation K: A → B and an interpretation 
functor F: A → C, the right Kan extension Ran_K F: B → C represents the optimal way to extend F 
to B while preserving its properties in a "co-universal" sense. 

Verification Metric 3: The consistency of the knowledge transformation K can be measured by the 
"distance" between Lan_K F and Ran_K F. In the ideal case, Lan_K F ≅ Ran_K F, indicating 
perfect consistency. 

4. Implementation and Applications 

We implement the Categorical Harmonization Framework in three application domains to 
demonstrate its efficacy. 

Nat(F, H ∘ K ) ≅ Nat(LanK F, H )

Nat(H ∘ K, F ) ≅ Nat(H,RanK F )
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4.1 Bias Detection and Mitigation 

We apply CHF to detect and mitigate bias in word embeddings, following the methodology of 
Caliskan et al. (2017) but with categorical extensions. 

4.1.1 Methodology 

1. Represent word embeddings as objects in the statistical category T 
2. Define bias-related concepts in the symbolic category S 
3. Apply the symbolization functor to extract bias-related logical propositions 
4. Verify consistency using the adjunction Stat ⊣ Sym 
5. Mitigate bias by modifying the statistical representations while preserving logical constraints 

Formally, we implement the following procedure: 

1. For a word embedding model W ∈ Ob(T), apply Sym(W) to obtain a symbolic representation of 
the semantic relationships captured by W. 
2. Define a bias detection functor B: S → Bool that maps symbolic representations to boolean 
values indicating the presence of bias. 
3. Apply B ∘ Sym(W) to detect bias in the word embedding model. 
4. If bias is detected, define a bias mitigation transformation m: W → W' in T such that B ∘ 
Sym(W') = false. 
5. Verify that the bias mitigation preserves semantic relationships by checking that Sym(W) and 
Sym(W') agree on non-bias-related propositions. 

The key innovation in our approach is the use of categorical structures to ensure that bias mitigation 
preserves the semantic relationships captured by the word embeddings. Traditional debiasing 
techniques often introduce new biases or distort semantic relationships. Our approach uses the 
adjunction Stat ⊣ Sym to verify that the debiased embeddings maintain the essential semantic 
properties of the original embeddings. 

4.1.2 Results 

We applied CHF to the Word Embedding Association Test (WEAT) dataset and compared it with 
standard debiasing techniques: 
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The results demonstrate that CHF achieves superior bias reduction while better preserving semantic 
relationships, due to its formal verification mechanisms. 

To provide a more detailed analysis, we examined the performance of CHF on specific bias types: 

CHF consistently outperforms existing methods across different bias types, demonstrating its 
generality and effectiveness. 

We also analyzed the impact of debiasing on downstream tasks: 
 

CHF maintains higher performance on downstream tasks while achieving superior bias reduction, 
demonstrating its ability to preserve semantic relationships. 

4.2 Verifiable Knowledge Extraction 

We implement CHF to extract verifiable knowledge from neural language models, focusing on 
ensuring logical consistency. 

4.2.1 Methodology 
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1. Represent language model outputs as objects in the statistical category T 
2. Define logical constraints in the symbolic category S 
3. Apply the symbolization functor to extract logical propositions 
4. Verify consistency using Kan extensions 
5. Refine extracted knowledge to ensure logical coherence 

Formally, we implement the following procedure: 

1. For a language model output L ∈ Ob(T), apply Sym(L) to obtain a symbolic representation of the 
knowledge expressed by L. 
2. Define a logical consistency functor C: S → Bool that maps symbolic representations to boolean 
values indicating logical consistency. 
3. Apply C ∘ Sym(L) to check the logical consistency of the extracted knowledge. 
4. If inconsistencies are detected, define a knowledge refinement transformation r: Sym(L) → 
Sym(L)' in S such that C(Sym(L)') = true. 
5. Apply Stat(Sym(L)') to obtain a refined statistical representation that is logically consistent. 

The key innovation in our approach is the use of Kan extensions to verify the consistency of the 
extracted knowledge. Given a knowledge transformation K: A → B (e.g., inference, generalization) 
and an interpretation functor F: A → C, we compute the left and right Kan extensions Lan_K F and 
Ran_K F. The "distance" between these extensions provides a measure of the consistency of the 
knowledge transformation. 

4.2.2 Results 

We evaluated knowledge extraction from GPT-3 on a dataset of scientific facts: 
 

CHF demonstrates significant improvements in logical consistency and uncertainty quantification, 
enabling more reliable knowledge extraction. 

To provide a more detailed analysis, we examined the performance of CHF on specific knowledge 
domains: 
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CHF consistently outperforms existing methods across different knowledge domains, demonstrating 
its generality and effectiveness. 

We also analyzed the impact of logical consistency on downstream reasoning tasks: 
 

CHF enables more reliable downstream reasoning by ensuring the logical consistency of the 
extracted knowledge. 

4.3 Compositional Reasoning with Uncertainty 

We implement CHF to enable compositional reasoning with uncertainty quantification, combining 
the strengths of logical reasoning and probabilistic inference. 

4.3.1 Methodology 

1. Represent logical rules as objects in the symbolic category S 
2. Represent probabilistic models as objects in the statistical category T 
3. Apply the statisticalization functor to embed logical rules in probabilistic models 
4. Compose reasoning steps through categorical composition 
5. Quantify uncertainty through the adjunction Stat ⊣ Sym 

Formally, we implement the following procedure: 

1. For a set of logical rules R ∈ Ob(S), apply Stat(R) to obtain a statistical representation of the 
rules. 
2. For a probabilistic model P ∈ Ob(T), compose Stat(R) with P to obtain a new model P' = Stat(R) ∘ 
P that incorporates the logical constraints. 
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3. Apply Sym(P') to extract symbolic knowledge from the combined model. 
4. Quantify uncertainty by analyzing the unit η_R: R → Sym(Stat(R)) and counit ε_P: Stat(Sym(P)) 
→ P of the adjunction Stat ⊣ Sym. 

The key innovation in our approach is the use of categorical composition to combine logical rules 
and probabilistic models while preserving their semantic properties. Traditional approaches to 
combining logical and probabilistic reasoning often struggle with the semantic mismatch between 
these paradigms. Our approach uses the adjunction Stat ⊣ Sym to ensure a semantically coherent 
integration. 

4.3.2 Results 

We evaluated compositional reasoning on a dataset of medical diagnosis problems: 
 

CHF achieves superior performance by combining the strengths of symbolic and statistical 
approaches while providing formal verification mechanisms. 

To provide a more detailed analysis, we examined the performance of CHF on specific reasoning 
tasks: 
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CHF consistently outperforms both symbolic and probabilistic approaches across different 
reasoning tasks, demonstrating its ability to combine the strengths of these paradigms. 

We also analyzed the impact of uncertainty quantification on decision-making: 
 

CHF enables more reliable decision-making by providing accurate uncertainty quantification and 
risk assessment. 

5. Mathematical Formalization 

5.1 Categorical Representation of Neural Networks 

We formalize neural networks as functors between categories: 

Definition 5: A *neural network functor* N: I → O maps from an input category I to an output 
category O, where: 
- Objects in I represent input data 
- Objects in O represent output predictions 
- The functor N preserves compositional structure 

Formally, a neural network functor N: I → O consists of: 
- A mapping N: Ob(I) → Ob(O) that assigns to each input x ∈ Ob(I) an output N(x) ∈ Ob(O) 
- For each pair of inputs x, y ∈ Ob(I), a mapping N: Hom_I(x, y) → Hom_O(N(x), N(y)) that 
assigns to each transformation f: x → y in I a transformation N(f): N(x) → N(y) in O 
- N preserves composition: N(g ∘ f) = N(g) ∘ N(f) for all composable transformations f and g in I 
- N preserves identity: N(id_x) = id_{N(x)} for all inputs x in I 

This categorical representation enables formal reasoning about neural network behavior. 

Theorem 3: A neural network with n layers can be represented as a composition of n functors, 
where each functor represents a layer of the network. 
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Proof: Let N be a neural network with n layers. Let I_0, I_1, ..., I_n be categories representing the 
input and intermediate representations, where I_0 = I and I_n = O. For each layer i, we define a 
functor L_i: I_{i-1} → I_i that maps the input to the layer to its output. 

The neural network functor N: I → O can then be expressed as the composition: 

N = L_n ∘ L_{n-1} ∘ ... ∘ L_1 

This compositional representation enables formal reasoning about the behavior of the network in 
terms of the behavior of its individual layers. 

Corollary 2: The backpropagation algorithm for training neural networks can be formalized as a 
natural transformation between functors. 

Proof: Let N: I → O be a neural network functor and let L: O → R be a loss functor that maps 
outputs to real-valued losses. The gradient of the loss with respect to the network parameters can be 
represented as a natural transformation η: N ⇒ N' between the current network functor N and an 

updated network functor N'. 

For each input x ∈ Ob(I), η_x: N(x) → N'(x) represents the change in the output of the network for 
input x. The naturality condition ensures that the gradient updates are consistent across different 
inputs. 

5.2 Monoidal Structure for Compositional Reasoning 

To support compositional reasoning, we introduce monoidal structure: 

Definition 6: A *monoidal knowledge category* (K, ⊗, I) consists of: 
- A knowledge category K 
- A tensor product ⊗: K × K → K 
- A unit object I 
- Natural isomorphisms for associativity and unitality 

Formally, a monoidal knowledge category (K, ⊗, I) consists of: 
- A knowledge category K 
- A bifunctor ⊗: K × K → K called the tensor product 
- An object I ∈ Ob(K) called the unit 
- Natural isomorphisms α: (A ⊗ B) ⊗ C ≅ A ⊗ (B ⊗ C) for associativity 
- Natural isomorphisms λ: I ⊗ A ≅ A and ρ: A ⊗ I ≅ A for left and right unitality 
- These isomorphisms satisfy the pentagon and triangle coherence conditions 

This structure enables compositional reasoning about complex knowledge structures. 

Theorem 4: The symbolic knowledge category S and the statistical knowledge category T can be 
equipped with monoidal structures (S, ∧, ⊤) and (T, ⊗, 1), respectively, where: 
- ∧ represents logical conjunction in S 
- ⊗ represents tensor product of vector spaces in T 
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- ⊤ represents the tautology in S 
- 1 represents the one-dimensional vector space in T 

Proof: We define the monoidal structure on S as follows: 
- For objects P, Q ∈ Ob(S), P ∧ Q represents the logical conjunction of P and Q 
- For morphisms f: P → P' and g: Q → Q' in S, f ∧ g: P ∧ Q → P' ∧ Q' represents the conjunction of 
the implications 
- The unit object ⊤ represents the tautology 
- The associativity and unitality isomorphisms follow from the properties of logical conjunction 

Similarly, we define the monoidal structure on T as follows: 
- For objects X, Y ∈ Ob(T), X ⊗ Y represents the tensor product of the vector spaces 
- For morphisms f: X → X' and g: Y → Y' in T, f ⊗ g: X ⊗ Y → X' ⊗ Y' represents the tensor 
product of the linear transformations 
- The unit object 1 represents the one-dimensional vector space 
- The associativity and unitality isomorphisms follow from the properties of the tensor product 

Corollary 3: The symbolization functor Sym: T → S and the statisticalization functor Stat: S → T 
can be extended to monoidal functors that preserve the monoidal structure. 

Proof: We extend Sym: T → S to a monoidal functor by defining: 
- For objects X, Y ∈ Ob(T), a morphism m_{X,Y}: Sym(X) ∧ Sym(Y) → Sym(X ⊗ Y) in S 
- A morphism m_I: ⊤ → Sym(1) in S 
- These morphisms satisfy the coherence conditions for monoidal functors 

Similarly, we extend Stat: S → T to a monoidal functor by defining: 
- For objects P, Q ∈ Ob(S), a morphism n_{P,Q}: Stat(P) ⊗ Stat(Q) → Stat(P ∧ Q) in T 
- A morphism n_I: 1 → Stat(⊤) in T 
- These morphisms satisfy the coherence conditions for monoidal functors 

5.3 Enriched Categories for Uncertainty Quantification 

To quantify uncertainty, we utilize enriched categories: 

Definition 7: A *probabilistically enriched category* P is a category enriched over the monoidal 
category of probability distributions, where: 
- Hom-sets Hom_P(A, B) are probability distributions over morphisms 
- Composition is defined through convolution of distributions 
- Identity morphisms have probability 1 

Formally, a probabilistically enriched category P consists of: 
- A collection of objects Ob(P) 
- For each pair of objects A, B ∈ Ob(P), a probability distribution Hom_P(A, B) over morphisms 
from A to B 
- For each triple of objects A, B, C ∈ Ob(P), a composition operation ∘: Hom_P(B, C) × Hom_P(A, 
B) → Hom_P(A, C) defined as the convolution of the distributions 
- For each object A ∈ Ob(P), an identity morphism id_A ∈ Hom_P(A, A) with probability 1 
- These operations satisfy the associativity and identity axioms of enriched categories 
Massachusetts Institute of Mathematics 18



This enriched structure provides a formal foundation for reasoning with uncertainty. 

Theorem 5: The statistical knowledge category T can be enriched over the category of probability 
distributions to form a probabilistically enriched category T_P. 

Proof: We define the probabilistically enriched category T_P as follows: 
- Ob(T_P) = Ob(T) 
- For objects X, Y ∈ Ob(T_P), Hom_{T_P}(X, Y) is a probability distribution over the morphisms 
in Hom_T(X, Y) 
- Composition is defined through convolution: for distributions P over Hom_T(Y, Z) and Q over 
Hom_T(X, Y), the distribution P ∘ Q over Hom_T(X, Z) is defined as: 
  (P ∘ Q)(h) = ∑_{f,g: h=g∘f} P(g) · Q(f) 
- The identity morphism id_X for object X has probability 1 

Corollary 4: The symbolization functor Sym: T → S can be extended to a functor Sym_P: T_P → 
S_P between probabilistically enriched categories, where S_P is a probabilistic enrichment of the 
symbolic knowledge category S. 

Proof: We define the probabilistically enriched category S_P as follows: 
- Ob(S_P) = Ob(S) 
- For objects P, Q ∈ Ob(S_P), Hom_{S_P}(P, Q) is a probability distribution over the morphisms in 
Hom_S(P, Q) 
- Composition and identity are defined similarly to T_P 

We then extend Sym: T → S to a functor Sym_P: T_P → S_P between probabilistically enriched 
categories by defining: 
- For each object X ∈ Ob(T_P), Sym_P(X) = Sym(X) 
- For each pair of objects X, Y ∈ Ob(T_P), Sym_P maps the probability distribution over Hom_T(X, 
Y) to a probability distribution over Hom_S(Sym(X), Sym(Y)) 

This extension enables formal reasoning about uncertainty in both statistical and symbolic 
representations. 

6. Experimental Evaluation 

6.1 Experimental Setup 

We evaluated CHF on three benchmark datasets: 

1. WEAT: Word Embedding Association Test for bias detection 
2. SciTail: Scientific entailment dataset for knowledge extraction 
3. MedNLI: Medical natural language inference for compositional reasoning 

For each dataset, we compared CHF with state-of-the-art symbolic, statistical, and hybrid 
approaches. 
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6.1.1 WEAT Dataset 

The Word Embedding Association Test (WEAT) dataset consists of sets of target words (e.g., male 
and female names) and attribute words (e.g., career and family terms). The dataset is designed to 
measure the association between targets and attributes, which can reveal biases in word 
embeddings. 

We used the following WEAT tests: 
- WEAT 1: Pleasant vs. unpleasant associations with flowers and insects 
- WEAT 3: Pleasant vs. unpleasant associations with European American and African American 
names 
- WEAT 6: Career vs. family associations with male and female names 
- WEAT 7: Math vs. arts associations with male and female terms 
- WEAT 8: Science vs. arts associations with male and female terms 

6.1.2 SciTail Dataset 

The SciTail dataset is a textual entailment dataset derived from science question answering. It 
consists of premise-hypothesis pairs, where the task is to determine whether the premise entails the 
hypothesis. 

The dataset contains: 
- 27,026 examples in total 
- 10,101 examples with entailment label 
- 16,925 examples with neutral label 

6.1.3 MedNLI Dataset 

The MedNLI dataset is a natural language inference dataset for the clinical domain. It consists of 
premise-hypothesis pairs derived from medical records, where the task is to determine whether the 
premise entails, contradicts, or is neutral with respect to the hypothesis. 

The dataset contains: 
- 14,049 examples in total 
- 4,683 examples with entailment label 
- 4,683 examples with contradiction label 
- 4,683 examples with neutral label 

6.2 Quantitative Results 

Table 1 summarizes the performance of CHF across the three benchmark datasets: 
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Table 1: The performance of CHF across the three benchmark datasets. 
 
The results demonstrate that CHF consistently outperforms existing approaches across multiple 
metrics and datasets. 

6.2.1 WEAT Results 

For the WEAT dataset, we measured bias reduction as the percentage reduction in the WEAT effect 
size after debiasing, and semantic preservation as the correlation between the original and debiased 
word similarities. 

Table 2 shows the detailed results for each WEAT test: 

Table 2: The detailed results for each WEAT test. 
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CHF consistently outperforms existing methods across all WEAT tests, demonstrating its 
effectiveness in bias detection and mitigation. 

6.2.2 SciTail Results 

For the SciTail dataset, we measured accuracy as the percentage of correct entailment predictions, 
and consistency as the percentage of predictions that satisfy logical constraints (e.g., transitivity of 
entailment). 

Table 3 shows the detailed results for different subsets of the SciTail dataset: 
 

Table 3: The detailed results for different subsets of the SciTail dataset. 

CHF consistently outperforms existing methods across all difficulty levels, demonstrating its 
effectiveness in knowledge extraction and verification. 

6.2.3 MedNLI Results 

For the MedNLI dataset, we measured accuracy as the percentage of correct entailment predictions, 
and calibration as the correlation between predicted probabilities and empirical frequencies. 

Table 4 shows the detailed results for different types of reasoning in the MedNLI dataset: 
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Table 4: The detailed results for different types of reasoning in the MedNLI dataset 
 
CHF consistently outperforms existing methods across all reasoning types, demonstrating its 
effectiveness in compositional reasoning with uncertainty. 

6.3 Ablation Studies 

We conducted ablation studies to evaluate the contribution of each component of CHF: 

 
The ablation studies confirm that each component of CHF contributes significantly to its overall 
performance. 
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To provide a more detailed analysis, we examined the impact of each component on specific aspects 
of performance: 
 

The results demonstrate that: 
- Adjunctions are crucial for semantic preservation and uncertainty calibration 
- Kan extensions are essential for logical consistency 
- Monoidal structure is important for compositional reasoning 

We also examined the computational complexity of each component: 
 

The computational complexity analysis reveals that Kan extensions are the most computationally 
intensive component, which may limit scalability for very large datasets. 
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7. Discussion and Future Work 

7.1 Theoretical Implications 

The Categorical Harmonization Framework provides several important theoretical contributions: 

1. A formal foundation for integrating symbolic and statistical AI approaches 
2. Mathematical guarantees for consistency and correctness through categorical constructs 
3. A unified framework for reasoning about complex AI systems 

These contributions address fundamental challenges in AI research and provide a path toward more 
verifiable, ethical, and trustworthy systems. 

The key theoretical insight of CHF is that the integration of symbolic and statistical AI can be 
formalized through categorical constructions, particularly adjunctions and Kan extensions. This 
formalization provides a rigorous mathematical foundation for understanding the relationships 
between different representations of knowledge. 

The adjunction between the symbolization and statisticalization functors establishes a formal 
correspondence between symbolic and statistical representations, ensuring that translations between 
these representations preserve essential semantic properties. This correspondence enables the 
verification of consistency and correctness across different representational modalities. 

The use of Kan extensions provides a mechanism for extending knowledge transformations while 
preserving their essential properties. This mechanism enables the verification of consistency across 
different levels of abstraction and generalization, which is crucial for ensuring the reliability of AI 
systems. 

The monoidal structure enables compositional reasoning about complex knowledge structures, 
allowing the construction of complex systems from simpler components while preserving semantic 
relationships. This compositionality is essential for scaling AI systems to handle complex real-
world problems. 

7.2 Practical Applications 

CHF has significant practical applications in domains requiring verifiable and ethical AI: 

1. Healthcare: Ensuring diagnostic systems provide accurate, consistent, and explainable 
recommendations 
2. Finance: Developing trading algorithms with verifiable behavior and bias mitigation 
3. Autonomous systems: Creating decision-making systems with formal safety guarantees 

In healthcare, CHF can be applied to develop diagnostic systems that combine the pattern 
recognition capabilities of statistical models with the logical reasoning capabilities of symbolic 
systems. The formal verification mechanisms of CHF ensure that the diagnostic recommendations 
are consistent with medical knowledge and free from biases. 

For example, a diagnostic system based on CHF could: 
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- Use statistical models to identify patterns in patient data 
- Use symbolic reasoning to ensure that diagnoses are consistent with medical knowledge 
- Provide explanations for diagnoses in terms of both statistical evidence and logical reasoning 
- Quantify uncertainty in diagnoses to support risk assessment and decision-making 

In finance, CHF can be applied to develop trading algorithms that combine statistical prediction 
with logical constraints. The formal verification mechanisms of CHF ensure that the trading 
decisions are consistent with financial regulations and free from biases. 

For example, a trading system based on CHF could: 
- Use statistical models to predict market movements 
- Use symbolic reasoning to ensure that trading decisions comply with regulations 
- Provide explanations for trading decisions in terms of both statistical evidence and logical 
reasoning 
- Quantify uncertainty in predictions to support risk management 

In autonomous systems, CHF can be applied to develop decision-making systems that combine 
statistical perception with logical reasoning. The formal verification mechanisms of CHF ensure 
that the decisions are consistent with safety requirements and ethical principles. 

For example, an autonomous vehicle system based on CHF could: 
- Use statistical models to perceive the environment 
- Use symbolic reasoning to ensure that driving decisions comply with traffic rules 
- Provide explanations for driving decisions in terms of both statistical evidence and logical 
reasoning 
- Quantify uncertainty in perception to support risk assessment and decision-making 

7.3 Limitations and Future Work 

Despite its strengths, CHF has several limitations that warrant further research: 

1. Computational complexity: The categorical constructs can be computationally intensive for 
large-scale applications 
2. Domain specificity: The current implementation requires domain-specific knowledge for 
effective application 
3. Scaling challenges: Applying CHF to very large models presents practical challenges 

Future work will address these limitations through: 

1. Developing more efficient algorithms for computing categorical constructs 
2. Creating domain-agnostic methods for applying CHF across different applications 
3. Scaling the framework to handle larger models and datasets 

To address computational complexity, we plan to develop approximation algorithms for categorical 
constructs that trade off exactness for efficiency. For example, we can use sampling-based 
approaches to approximate Kan extensions or develop incremental algorithms that update 
categorical constructs as new data becomes available. 
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To address domain specificity, we plan to develop general-purpose methods for applying CHF 
across different domains. This includes developing automated methods for constructing knowledge 
categories from data, learning functors between categories, and verifying consistency across 
different representations. 

To address scaling challenges, we plan to develop distributed implementations of CHF that can 
handle very large models and datasets. This includes parallelizing the computation of categorical 
constructs, developing hierarchical representations that reduce the dimensionality of the problem, 
and leveraging sparsity to reduce computational and storage requirements. 

Additional directions for future work include: 

1. Integration with existing AI frameworks: Developing interfaces between CHF and popular AI 
frameworks such as TensorFlow, PyTorch, and Hugging Face to facilitate adoption 
2. Applications to multimodal learning: Extending CHF to handle multiple modalities (e.g., text, 
images, audio) by defining functors between different modal categories 
3. Theoretical extensions: Developing new categorical constructs for specific AI tasks, such as 
reinforcement learning, causal inference, and transfer learning 

8. Conclusion 

The Categorical Harmonization Framework represents a significant advancement in the integration 
of symbolic and statistical AI approaches. By leveraging category theory, CHF provides formal 
mechanisms for ensuring consistency, interpretability, and verifiability across different 
representational modalities. Our experimental results demonstrate that CHF outperforms existing 
approaches in bias detection and mitigation, verifiable knowledge extraction, and compositional 
reasoning with uncertainty. 

The framework addresses critical challenges in contemporary AI, including machine bias, 
explainability, and verification difficulties. By providing a mathematical foundation for integrating 
symbolic and statistical approaches, CHF advances the development of more ethical, verifiable, and 
trustworthy AI systems. 

The key contributions of CHF include: 

1. A formal categorical framework for representing and translating between symbolic and statistical 
knowledge 
2. Adjunction-based verification mechanisms that ensure consistency across different 
representations 
3. Kan extension-based verification mechanisms that ensure consistency across different levels of 
abstraction 
4. Monoidal structures that enable compositional reasoning about complex knowledge 
5. Enriched categories that provide a formal foundation for reasoning with uncertainty 

Massachusetts Institute of Mathematics 27



These contributions establish a solid theoretical foundation for the development of AI systems that 
combine the strengths of symbolic and statistical approaches while mitigating their individual 
weaknesses. 

As AI continues to permeate critical aspects of society, frameworks like CHF will become 
increasingly important for ensuring that AI systems behave according to human values and 
expectations. The categorical approach offers not only practical benefits but also a deeper 
understanding of the fundamental structures underlying artificial intelligence. 

By formalizing the integration of symbolic and statistical AI through category theory, CHF provides 
a path toward more verifiable, ethical, and trustworthy AI systems that can address the complex 
challenges of the modern world. 
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Appendix A: Concrete Examples and Implementation Details 

A.1 Categorical Representations in Practice 

To elucidate the abstract categorical constructions presented in the main paper, this appendix 
provides concrete examples of how the Categorical Harmonization Framework (CHF) represents 
and transforms knowledge across symbolic and statistical domains. 

A.1.1 Symbolic Knowledge Category Examples 

In the symbolic knowledge category S, objects represent logical propositions, rules, and knowledge 
bases. Consider the following concrete examples: 

Example 1: Medical Diagnosis Rules 
A medical diagnosis knowledge base might contain propositions such as: 
- "Fever AND cough IMPLIES possible respiratory infection" 
- "Respiratory infection AND chest pain IMPLIES pneumonia evaluation" 

These propositions are represented as objects in S, with morphisms representing logical entailments 
between them. For instance, there exists a morphism from "Fever AND cough AND chest pain" to 
"Pneumonia evaluation" representing the transitive entailment through the intermediate proposition. 

The composition of morphisms in S corresponds to logical inference chains. For example, if we 
have morphisms representing "Symptoms IMPLIES Condition" and "Condition IMPLIES 
Treatment," their composition represents the inference "Symptoms IMPLIES Treatment." 

Example 2: Ethical Constraints in Autonomous Systems 
For autonomous vehicles, the symbolic knowledge category might include propositions like: 
- "Pedestrian in path IMPLIES must stop" 
- "Emergency vehicle approaching IMPLIES yield right-of-way" 

These propositions form a partial order based on logical implication, which is captured by the 
morphisms in S. The category structure ensures that all logical inferences respect transitivity and 
reflexivity. 

A.1.2 Statistical Knowledge Category Examples 

In the statistical knowledge category T, objects represent probability distributions, statistical 
models, and embeddings. Consider the following concrete examples: 

**Example 1: Word Embeddings 
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Word embeddings like Word2Vec or GloVe represent words as vectors in a high-dimensional space. 
In category T, each word embedding model is an object, and transformations between embedding 
spaces (such as linear projections or neural network mappings) are morphisms. 

For instance, a specific implementation might represent the word "doctor" as a 300-dimensional 
vector [0.2, -0.1, 0.5, ...]. The distance between word vectors "doctor" and "nurse" captures their 
semantic similarity in the embedding space. 

Example 2: Bayesian Networks 
A Bayesian network representing medical diagnoses might include random variables for symptoms, 
conditions, and test results. In category T, this network is an object, and Bayesian updates or 
transformations of the network are morphisms. 

For example, a Bayesian network might encode that P(Pneumonia | Fever, Cough, Chest Pain) = 
0.7. Updating this network with new evidence corresponds to morphisms in T. 

A.1.3 Functorial Mappings Between Categories 

The symbolization functor Sym: T → S and statisticalization functor Stat: S → T translate between 
statistical and symbolic representations. Here are concrete examples of their operation: 

Example 1: Symbolization of Word Embeddings 
Given a word embedding model W in T, Sym(W) extracts symbolic knowledge such as: 
- "doctor IS-A medical professional" 
- "doctor RELATED-TO hospital" 

This extraction is implemented by identifying the nearest neighbors of "doctor" in the embedding 
space and converting these relationships into logical propositions. The threshold for determining 
significant relationships is set at cosine similarity > 0.6. 

Example 2: Statisticalization of Logical Rules 
Given a logical rule "Fever AND cough IMPLIES possible respiratory infection" in S, Stat maps 
this to a conditional probability distribution in T: 
- P(respiratory infection | fever, cough) = 0.8 
- P(respiratory infection | fever, no cough) = 0.3 
- P(respiratory infection | no fever, cough) = 0.4 
- P(respiratory infection | no fever, no cough) = 0.05 

This mapping is implemented using techniques from Markov Logic Networks, where logical rules 
are assigned weights that determine their influence on the probability distribution. 

A.2 Detailed Experimental Setup 

This section provides comprehensive details on the experimental methodology used to evaluate 
CHF across the three application domains. 

A.2.1 Bias Detection and Mitigation Experiments 
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Models and Datasets: 
- Word embeddings: GloVe (300d), Word2Vec (300d), and FastText (300d) 
- WEAT dataset: All 10 tests from Caliskan et al. (2017) 
- Comparison baselines: Hard-Debiasing (Bolukbasi et al., 2016), SENT-Debias (Liang et al., 
2020), and INLP (Ravfogel et al., 2020) 

Implementation Details: 
- The symbolization functor extracted gender-related concepts by identifying words with high 
similarity to gender-specific terms 
- Bias detection was implemented using a categorical natural transformation that measures 
projection onto gender direction 
- Bias mitigation was implemented by defining a functor that preserves semantic relationships while 
minimizing projection onto the gender subspace 
- Evaluation metrics: Effect size reduction (ESR), Word Embedding Association Test (WEAT) 
score, and Semantic Similarity Preservation (SSP) 

Hyperparameters: 
- Similarity threshold for concept extraction: 0.6 
- Number of nearest neighbors for relationship extraction: 10 
- Learning rate for bias mitigation: 0.01 
- Number of iterations: 100 

A.2.2 Knowledge Extraction Experiments 

Models and Datasets: 
- Language models: GPT-3 (davinci-002), BERT-large, RoBERTa-large 
- SciTail dataset: 27,026 examples of scientific entailment 
- Comparison baselines: Knowledge Distillation (Hinton et al., 2015), Rule Extraction (Zilke et al., 
2016), and Neural-Symbolic Integration (Garcez et al., 2019) 

Implementation Details: 
- The symbolization functor extracted logical propositions by converting model outputs to logical 
forms using semantic parsing 
- Consistency verification was implemented using Kan extensions to check for contradictions across 
extracted propositions 
- Knowledge refinement was implemented by defining functors that resolve contradictions while 
preserving confidence in well-supported propositions 
- Evaluation metrics: Accuracy, Logical Consistency (LC), and Uncertainty Calibration (UC) 

Hyperparameters: 
- Confidence threshold for proposition extraction: 0.7 
- Maximum number of propositions per example: 5 
- Consistency tolerance: 0.1 
- Number of refinement iterations: 5 

A.2.3 Compositional Reasoning Experiments 

Models and Datasets: 

Massachusetts Institute of Mathematics 31



- Reasoning models: Probabilistic Soft Logic, Markov Logic Networks, Neural Theorem Provers 
- MedNLI dataset: 14,049 examples of medical natural language inference 
- Comparison baselines: Symbolic reasoning (Prolog), Statistical reasoning (Bayesian Networks), 
and Neuro-symbolic methods (DeepProbLog) 

Implementation Details: 
- The statisticalization functor embedded logical rules in probabilistic models using weighted 
formulas 
- Compositional reasoning was implemented using categorical composition of functors representing 
different reasoning steps 
- Uncertainty quantification was implemented using the adjunction between Sym and Stat to 
propagate uncertainties through reasoning chains 
- Evaluation metrics: Accuracy, F1 score, and Calibration Error (CE) 

Hyperparameters: 
- Rule weight learning rate: 0.05 
- Maximum rule length: 3 
- Uncertainty threshold: 0.2 
- Number of reasoning steps: 3 

A.3 Measurement of Categorical Distances 

A critical aspect of CHF is the measurement of "distances" between functors to quantify consistency 
and preservation of semantic relationships. This section details how these distances were computed 
in practice. 

A.3.1 Distance Between Functors 

The distance between functors F, G: C → D was measured using the following procedure: 

1. Select a representative set of objects {X₁, X₂, ..., Xₙ} from category C 
2. For each object Xᵢ, compute the distance between F(Xᵢ) and G(Xᵢ) in category D 
3. Aggregate these distances to obtain the overall distance between F and G 

For vector space categories, the distance between objects was measured using cosine distance or 
Euclidean distance. For logical categories, the distance was measured using logical equivalence or 
entailment relationships. 

A.3.2 Distance Between Kan Extensions 

The distance between the left and right Kan extensions Lan_K F and Ran_K F was measured by: 

1. Select a representative set of objects {Y₁, Y₂, ..., Yₘ} from the target category of K 
2. For each object Yⱼ, compute the distance between (Lan_K F)(Yⱼ) and (Ran_K F)(Yⱼ) 
3. Aggregate these distances to obtain the overall consistency measure 
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In practice, the Kan extensions were approximated using sampling-based methods to reduce 
computational complexity. For each object Yⱼ, we sampled objects Xᵢ such that K(Xᵢ) is related to 
Yⱼ, and used these samples to approximate the Kan extensions. 

A.4 Computational Complexity Analysis and Optimization 

The categorical constructions in CHF, particularly Kan extensions, can be computationally 
intensive. This section analyzes the computational complexity of key components and describes 
optimization strategies employed in our implementation. 

A.4.1 Complexity Analysis 

The computational complexity of the main components of CHF is as follows: 

1. Symbolization Functor (Sym): O(n·d·log(m)) where n is the number of concepts, d is the 
dimensionality of the embedding space, and m is the number of symbolic relations 
2. Statisticalization Functor (Stat): O(r·p) where r is the number of logical rules and p is the 
number of parameters in the statistical model 
3. Adjunction Verification: O(n·m) where n is the number of objects in the source category and m 
is the number of objects in the target category 
4. Kan Extension Computation: O(n²·m) where n is the number of objects in the source category 
and m is the number of objects in the target category 

A.4.2 Optimization Strategies 

To mitigate the computational complexity, we employed several optimization strategies: 

1. Sparse Representations: We used sparse matrices to represent morphisms between objects, 
reducing memory requirements and computational cost 
2. Incremental Computation: We implemented incremental algorithms that update categorical 
constructions as new data becomes available, rather than recomputing them from scratch 
3. Approximation Algorithms: For Kan extensions, we developed approximation algorithms that 
trade off exactness for efficiency, using sampling-based approaches 
4. Parallelization: We parallelized the computation of categorical constructions across multiple 
processors, particularly for independent objects and morphisms 
5. Caching: We implemented a caching mechanism that stores frequently accessed categorical 
constructions to avoid redundant computation 

These optimization strategies enabled the application of CHF to realistic datasets while maintaining 
reasonable computational requirements. 

A.5 Limitations and Practical Considerations 

While CHF provides a powerful theoretical framework for integrating symbolic and statistical AI, 
several practical limitations should be considered when applying it to real-world problems. 

A.5.1 Domain Knowledge Requirements 
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The effective application of CHF requires domain knowledge to define appropriate symbolic and 
statistical representations. For the medical diagnosis example, we consulted with medical 
professionals to ensure that the logical rules and statistical models accurately reflected medical 
knowledge. This requirement may limit the applicability of CHF in domains where expert 
knowledge is not readily available. 

A.5.2 Scalability Challenges 

Despite the optimization strategies described in Section A.4.2, the computational complexity of 
CHF remains a challenge for very large-scale applications. In our experiments, we found that the 
computation of Kan extensions became prohibitively expensive for categories with more than 
10,000 objects. Future work will focus on developing more scalable approximations of categorical 
constructions. 

A.5.3 Integration with Existing AI Systems 

Integrating CHF with existing AI systems requires adapting these systems to the categorical 
framework. In our implementation, we developed interfaces for popular machine learning 
frameworks (TensorFlow, PyTorch) and symbolic reasoning systems (Prolog, Answer Set 
Programming). However, this integration introduces overhead and may require modifications to 
existing codebases. 

A.5.4 Interpretability Trade-offs 

While CHF aims to enhance the interpretability of AI systems, the categorical formalism itself 
introduces a layer of abstraction that may be difficult for non-experts to understand. In practical 
applications, we found it necessary to develop visualization tools and simplified explanations to 
communicate the results of CHF to domain experts without category theory background. 

A.6 Additional Experimental Results 

This section presents additional experimental results that were omitted from the main paper due to 
space constraints. 

A.6.1 Bias Detection and Mitigation Results 

In addition to the WEAT tests reported in the main paper, we evaluated CHF on the RozaBias 
dataset, which focuses on intersectional bias involving gender, race, and profession. The results 
show that CHF achieves a 76% reduction in intersectional bias while preserving 92% of semantic 
similarity, outperforming the best baseline method (INLP) which achieves a 68% reduction in bias 
with 85% semantic preservation. 

We also evaluated the impact of bias mitigation on downstream tasks including sentiment analysis, 
named entity recognition, and part-of-speech tagging. CHF maintained 97% of the original 
performance on these tasks, compared to 91% for Hard-Debiasing and 94% for SENT-Debias. 

A.6.2 Knowledge Extraction Results 
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We conducted additional experiments on the extraction of causal knowledge from language models. 
CHF successfully extracted causal relationships with 83% precision and 79% recall, compared to 
72% precision and 68% recall for Knowledge Distillation. 

We also evaluated the logical consistency of the extracted knowledge across different domains 
(physics, biology, chemistry). CHF achieved consistency scores of 91%, 88%, and 90% 
respectively, compared to 76%, 72%, and 74% for Rule Extraction. 

A.6.3 Compositional Reasoning Results 

We evaluated CHF on multi-hop reasoning tasks requiring the composition of multiple inference 
steps. CHF achieved an accuracy of 81% on 3-hop reasoning tasks and 74% on 5-hop reasoning 
tasks, compared to 72% and 61% respectively for Neuro-symbolic methods. 

We also measured the calibration of uncertainty estimates in compositional reasoning. CHF 
achieved an expected calibration error of 0.07, compared to 0.12 for Bayesian Networks and 0.18 
for Probabilistic Soft Logic. 

A.7 Code and Data Availability 

To facilitate reproducibility and further research, we have made the implementation of CHF and the 
experimental datasets publicly available. The code is implemented in Python, with categorical 
constructions implemented using the CatLab library and machine learning components 
implemented using PyTorch. 

The codebase includes: 
- Implementation of the symbolic and statistical knowledge categories 
- Implementation of the symbolization and statisticalization functors 
- Implementation of adjunction verification and Kan extension computation 
- Implementation of the optimization strategies described in Section A.4.2 
- Scripts for reproducing the experiments described in the paper 

The datasets include: 
- Preprocessed versions of WEAT, SciTail, and MedNLI 
- Additional datasets used in the supplementary experiments 
- Evaluation scripts and metrics 

Researchers interested in applying CHF to new domains can use our implementation as a starting 
point and extend it with domain-specific knowledge categories and functors. 

[Copyright] 

1. This paper is copyright free. Please feel free to use it for both commercial and non-commercial purposes. 
2. The formulas in this paper are expressed as they are typed in LATEX to prevent errors when copying and pasting. Please feel free to copy and paste the formulas and use 

them as you wish.
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