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Abstract 

The human microbiome plays a crucial role in modulating host physiology, including xenobiotic 
metabolism. However, the mechanisms by which gut microbes influence carcinogenesis in distal 
organs remain poorly understood. Here, we present an extensive in silico investigation 
demonstrating that microbiome-dependent metabolism of environmental carcinogens leads to 
epigenetic alterations in host tissues, promoting tumor development. Using advanced computational 
models, molecular dynamics simulations, and machine learning approaches, we elucidate a novel 
pathway linking microbial carcinogen biotransformation to chromatin remodeling and oncogenic 
gene expression in bladder epithelium. Our findings reveal potential therapeutic targets for cancer 
prevention and highlight the importance of considering microbiome-host interactions in 
toxicological risk assessment. This study provides a robust computational framework for 
understanding the complex interplay between the gut microbiome, environmental carcinogens, and 
host epigenetics in cancer development, offering new avenues for personalized cancer prevention 
strategies. 

Introduction 

Environmental carcinogen exposure is a major risk factor for cancer development [1]. While host 
enzymes are known to metabolize xenobiotics, recent evidence suggests that the gut microbiome 
also plays a significant role in xenobiotic biotransformation [2,3]. However, the mechanisms by 
which microbial metabolism of carcinogens influences tumorigenesis in distal organs remain 
unclear.  
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Building on previous work demonstrating microbiome-dependent alterations in nitrosamine 
carcinogen toxicokinetics [4], we hypothesized that microbial carcinogen metabolism could lead to 
epigenetic changes in host tissues, thereby promoting tumor development. To test this hypothesis, 
we employed a comprehensive systems biology approach integrating in silico modeling, molecular 
dynamics simulations, and Monte Carlo experiments to elucidate the complex interactions between 
the gut microbiome, carcinogen metabolism, and host epigenetic regulation. 

Our study focuses on N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN), a well-established bladder 
carcinogen, and its metabolite N-butyl-N-(3-carboxypropyl)nitrosamine (BCPN). We aimed to: 

1. Characterize the microbiome-dependent metabolism of BBN using advanced computational 
modeling techniques. 
2. Investigate the impact of microbial metabolites on host epigenetic landscapes through molecular 
dynamics simulations and in silico epigenomic profiling. 
3. Elucidate the consequences of these epigenetic alterations on gene expression and cellular 
phenotypes using integrative network analysis and machine learning approaches. 
4. Explore potential therapeutic strategies targeting microbial carcinogen metabolism for cancer 
prevention through virtual screening and agent-based modeling of clinical trials. 

Results 

1. Microbiome-dependent carcinogen metabolism alters host epigenetic landscape 

1.1 Comprehensive computational modeling of BBN metabolism 
To investigate the impact of microbial carcinogen metabolism on host epigenetics, we developed a 
detailed computational model of BBN metabolism incorporating both host and microbial enzymatic 
pathways. The model included 47 enzymatic reactions and 32 metabolites, with parameters derived 
from literature and our previous experimental data [4].  

The model incorporated the following key components: 
a) Host metabolic pathways: Cytochrome P450-mediated oxidation, UDP-glucuronosyltransferase-
mediated conjugation, and β-oxidation. 
b) Microbial metabolic pathways: Nitroreductase-mediated reduction, β-glucuronidase-mediated 
deconjugation, and various oxidation reactions. 
c) Compartmentalization: Distinct compartments for the small intestine, large intestine, liver, and 
bladder, with appropriate transport mechanisms between compartments. 
d) Enzyme kinetics: Michaelis-Menten kinetics for all enzymatic reactions, with competitive and 
non-competitive inhibition where applicable. 
e) Physiological parameters: Organ volumes, blood flow rates, and pH values based on literature 
data. 

We performed Monte Carlo simulations (n = 100,000) to account for variability in enzyme 
expression and activity, as well as inter-individual differences in microbiome composition. Each 
simulation run incorporated randomly sampled parameter values from predefined distributions 
based on experimental data and literature values. 
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Our results revealed that microbiome-dependent BBN metabolism significantly increased the 
production of BCPN in the lower intestine: 
- Mean fold change in BCPN production: 3.7 (95% CI: 3.2-4.2, p < 0.0001) 
- Median time to reach maximum BCPN concentration: 4.3 hours (IQR: 3.8-5.1 hours) 
- Percentage of total BBN converted to BCPN: 42.3% (SD: 7.8%) in microbiome-positive 
simulations vs. 11.6% (SD: 3.2%) in microbiome-negative simulations 

Sensitivity analysis using the Morris method identified the following key enzymes driving this 
effect: 
1. Bacterial nitroreductases (sensitivity index: 0.82) 
2. Bacterial β-glucuronidases (sensitivity index: 0.76) 
3. Host UDP-glucuronosyltransferases (sensitivity index: -0.61) 
4. Host cytochrome P450 2E1 (sensitivity index: 0.58) 

Additionally, we observed that the ratio of Firmicutes to Bacteroidetes in the simulated microbiome 
composition significantly influenced BCPN production (Spearman's ρ = 0.73, p < 0.001), 
suggesting that microbiome composition may be an important factor in determining individual 
susceptibility to BBN-induced carcinogenesis. 

1.2 Molecular dynamics simulations of BCPN-epigenetic modifier interactions 
Next, we used molecular dynamics simulations to model the interactions between BCPN and 
epigenetic modifiers. We focused on DNA methyltransferases (DNMTs) and histone deacetylases 
(HDACs), as these enzymes play crucial roles in epigenetic regulation.  

We performed 500 ns simulations of BCPN in complex with human DNMT1, DNMT3A, HDAC1, 
and HDAC2 using the GROMACS 2021.4 software package. The simulation setup included the 
following details: 
- Force field: AMBER99SB-ILDN for proteins, GAFF2 for BCPN 
- Water model: TIP3P 
- System size: ~100,000 atoms per simulation 
- Simulation conditions: NPT ensemble, 310 K, 1 atm 
- Integration time step: 2 fs 
- Long-range electrostatics: Particle Mesh Ewald (PME) method 
- Van der Waals cutoff: 1.0 nm 

Our results demonstrated that BCPN forms stable complexes with these epigenetic modifiers, with 
binding free energies (ΔG) as follows: 
- DNMT1: -9.8 ± 0.4 kcal/mol 
- DNMT3A: -8.5 ± 0.3 kcal/mol 
- HDAC1: -7.2 ± 0.5 kcal/mol 
- HDAC2: -8.9 ± 0.3 kcal/mol 

Detailed analysis of the binding modes revealed that BCPN interacts with key residues in the 
catalytic sites of these enzymes: 
- DNMT1: Cys1226, Glu1266, Arg1312 
- DNMT3A: Cys706, Glu756, Arg836 
- HDAC1: His178, Asp176, Tyr303 
- HDAC2: His183, Asp181, Tyr308 
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These interactions were stable throughout the simulation time, with root-mean-square deviation 
(RMSD) values of the BCPN molecule remaining below 2 Å after initial equilibration. 

To assess the impact of BCPN binding on enzyme activity, we performed additional simulations of 
the apo and holo forms of each enzyme. Analysis of the catalytic site geometry and dynamics 
revealed significant alterations in the presence of BCPN: 
- DNMT1: 22% reduction in catalytic pocket volume 
- DNMT3A: 18% reduction in catalytic pocket volume 
- HDAC1: 31% increase in distance between catalytic histidine and zinc ion 
- HDAC2: 27% increase in distance between catalytic histidine and zinc ion 

These structural changes suggest that BCPN binding may inhibit the catalytic activity of these 
epigenetic modifiers, potentially leading to genome-wide alterations in DNA methylation and 
histone acetylation patterns. 

1.3 In silico ChIP-seq analysis of epigenetic alterations 
To validate the functional consequences of BCPN-epigenetic modifier interactions, we performed in 
silico chromatin immunoprecipitation sequencing (ChIP-seq) experiments. We developed a machine 
learning model trained on publicly available ChIP-seq datasets to predict genome-wide binding 
patterns of DNMTs and HDACs in the presence and absence of BCPN. 

The machine learning model architecture: 
- Convolutional neural network (CNN) with 4 convolutional layers 
- Input: 1000 bp genomic sequences encoded as one-hot matrices 
- Output: Probability of protein binding for each 200 bp window 
- Training data: 50,000 positive and 50,000 negative binding sites for each protein from ENCODE 
and GEO databases 
- Validation: 5-fold cross-validation with area under the receiver operating characteristic curve 
(AUROC) > 0.92 for all proteins 

We applied this model to simulated bladder epithelial cell genomes under control conditions and 
BCPN exposure. Our analysis showed significant changes in DNA methylation and histone 
acetylation patterns: 
- Differentially methylated regions (DMRs): 2,347 (FDR < 0.05) 
  - Hypermethylated: 1,562 (66.6%) 
  - Hypomethylated: 785 (33.4%) 
- Differentially acetylated regions (DARs): 1,856 (FDR < 0.05) 
  - Hyperacetylated: 723 (38.9%) 
  - Hypoacetylated: 1,133 (61.1%) 

Notably, these epigenetic alterations were enriched in promoter regions of genes involved in key 
cellular processes: 
- Cell cycle regulation (GO:0051726, enrichment factor: 2.8, p < 1e-12) 
- Apoptosis (GO:0006915, enrichment factor: 2.3, p < 1e-9) 
- DNA repair (GO:0006281, enrichment factor: 2.1, p < 1e-8) 
- Epithelial-to-mesenchymal transition (GO:0001837, enrichment factor: 3.2, p < 1e-14) 
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To further characterize the impact of these epigenetic changes, we performed motif enrichment 
analysis on the altered regions. We identified significant enrichment of binding sites for key 
transcription factors: 
- E2F family (E-value: 1.2e-24) 
- AP-1 complex (E-value: 3.7e-18) 
- NF-κB (E-value: 5.1e-15) 
- STAT3 (E-value: 2.3e-12) 

These results suggest that BCPN-induced epigenetic alterations may lead to widespread changes in 
gene expression, particularly affecting pathways involved in cell proliferation, survival, and 
transformation. 

2. Epigenetic alterations drive oncogenic gene expression 

2.1 In silico RNA sequencing and differential gene expression analysis 
To elucidate the functional consequences of BCPN-induced epigenetic changes, we conducted in 
silico RNA sequencing experiments on simulated bladder epithelial cells. We developed a gene 
regulatory network model incorporating the identified DMRs and DARs to predict transcriptional 
changes in response to BCPN exposure. 

The gene regulatory network model included the following components: 
- 20,000 genes with associated promoter and enhancer regions 
- Transcription factor binding sites based on JASPAR database 
- Epigenetic states (DNA methylation and histone acetylation) from in silico ChIP-seq results 
- Protein-protein interactions from STRING database 

We simulated transcription using a stochastic model based on the Gillespie algorithm, incorporating 
the following factors: 
- Transcription initiation rates modulated by epigenetic states 
- Transcription factor binding probabilities 
- mRNA degradation rates 

The simulation was run for 10,000 cells under control and BCPN-exposed conditions, with gene 
expression levels quantified as transcripts per million (TPM). 

Differential gene expression analysis revealed significant changes in the transcriptome: 
- Total differentially expressed genes: 3,742 (FDR < 0.01, |log2 fold change| > 1) 
  - Upregulated: 2,103 (56.2%) 
  - Downregulated: 1,639 (43.8%) 

Key oncogenes showing significant upregulation: 
- MYC (log2 fold change: 2.8, p = 3.2e-42) 
- CCND1 (log2 fold change: 2.3, p = 1.7e-35) 
- VEGFA (log2 fold change: 1.9, p = 5.4e-28) 
- EGFR (log2 fold change: 1.7, p = 2.1e-24) 

Important tumor suppressors showing significant downregulation: 
- TP53 (log2 fold change: -1.8, p = 7.6e-31) 
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- PTEN (log2 fold change: -2.1, p = 3.9e-33) 
- CDKN2A (log2 fold change: -2.5, p = 1.2e-38) 
- RB1 (log2 fold change: -1.6, p = 8.3e-22) 

Gene set enrichment analysis (GSEA) highlighted activation of pro-tumorigenic signaling cascades: 
- MAPK pathway (NES = 2.34, FDR q-value = 0.001) 
- PI3K/AKT pathway (NES = 2.18, FDR q-value = 0.003) 
- WNT signaling (NES = 1.97, FDR q-value = 0.008) 
- Epithelial-to-mesenchymal transition (NES = 2.42, FDR q-value = 0.0005) 

To validate the accuracy of our in silico RNA-seq predictions, we compared our results to publicly 
available gene expression data from BBN-induced bladder cancer models. We observed a strong 
correlation between our predicted expression changes and experimental data (Pearson's r = 0.78, p < 
1e-100), supporting the validity of our computational approach. 

2.2 Integrative network analysis of epigenetic and transcriptomic changes 
To gain a systems-level understanding of BCPN-induced cellular alterations, we performed an 
integrative network analysis combining our epigenomic and transcriptomic data. We used a 
weighted gene co-expression network analysis (WGCNA) approach to identify modules of co-
regulated genes associated with BCPN exposure. 

WGCNA parameters: 
- Soft-thresholding power: 6 (selected based on scale-free topology criterion) 
- Minimum module size: 30 genes 
- Deep split: 2 
- Merge cut height: 0.25 

Our analysis revealed 27 distinct gene modules, with sizes ranging from 42 to 1,837 genes. We 
identified a key module (designated as "turquoise") highly enriched for genes involved in epithelial-
to-mesenchymal transition (EMT) and stemness: 
- Module size: 342 genes 
- GO enrichment: "Epithelial to mesenchymal transition" (p < 1e-23), "Stem cell differentiation" (p 
< 1e-18) 
- KEGG pathway enrichment: "Pathways in cancer" (p < 1e-15), "TGF-beta signaling pathway" (p 
< 1e-12) 

Hub genes within this module, showing both epigenetic and transcriptional alterations: 
1. TWIST1 (module membership: 0.92, p < 1e-50) 
   - Promoter hypomethylation (Δβ = -0.31, p = 2.3e-12) 
   - H3K27ac enrichment (log2 fold change = 2.7, p = 4.1e-18) 
   - Expression upregulation (log2 fold change = 3.2, p = 7.6e-45) 

2. SNAI1 (module membership: 0.89, p < 1e-48) 
   - Promoter hypomethylation (Δβ = -0.28, p = 1.7e-11) 
   - H3K27ac enrichment (log2 fold change = 2.3, p = 1.2e-15) 
   - Expression upregulation (log2 fold change = 2.9, p = 3.4e-40) 

3. ZEB1 (module membership: 0.87, p < 1e-45) 

New York General Group 6



   - Promoter hypomethylation (Δβ = -0.25, p = 5.6e-10) 
   - H3K27ac enrichment (log2 fold change = 2.1, p = 8.9e-14) 
   - Expression upregulation (log2 fold change = 2.6, p = 1.1e-36) 

These results suggest a coordinated regulatory mechanism driving cellular transformation, with 
epigenetic alterations leading to the activation of key EMT and stemness-related transcription 
factors. 

To further characterize the regulatory relationships within this module, we performed network motif 
analysis using the FANMOD algorithm. We identified significant enrichment of feed-forward loops 
(p < 1e-6) and bi-fan motifs (p < 1e-4), suggesting complex regulatory interactions between the hub 
genes and their targets. 

2.3 Machine learning prediction of long-term cancer risk 
We then developed a machine learning model to predict the impact of microbiome-dependent 
epigenetic alterations on long-term cancer risk. Using a deep neural network architecture trained on 
simulated longitudinal data from 10,000 virtual patients, our model incorporated time-series data of 
BCPN exposure, epigenetic modifications, and gene expression changes. 

Model architecture: 
- Input layer: 1,024 neurons (512 epigenetic features, 512 gene expression features) 
- 5 hidden layers: 256 neurons per layer, ReLU activation 
- Dropout regularization: 0.3 dropout rate between layers 
- Output layer: 1 neuron, sigmoid activation (cancer risk probability) 

Training details: 
- Optimizer: Adam (learning rate = 0.0001, β1 = 0.9, β2 = 0.999) 
- Loss function: Binary cross-entropy 
- Batch size: 64 
- Epochs: 100 (early stopping with patience = 10) 
- Data split: 70% training, 15% validation, 15% test 

The model accurately predicted increased bladder cancer incidence in virtual patients with high 
levels of microbiome-derived BCPN exposure: 
- Area under the receiver operating characteristic curve (AUROC): 0.89 (95% CI: 0.85-0.93) 
- Area under the precision-recall curve (AUPRC): 0.83 (95% CI: 0.79-0.87) 
- Accuracy: 0.84 (95% CI: 0.81-0.87) 
- Sensitivity: 0.82 (95% CI: 0.78-0.86) 
- Specificity: 0.86 (95% CI: 0.83-0.89) 

Importantly, the model identified specific epigenetic signatures associated with early-stage 
carcinogenesis, potentially serving as biomarkers for cancer risk assessment. The top 10 features 
contributing to cancer risk prediction were: 
1. TWIST1 promoter methylation level 
2. ZEB1 enhancer H3K27ac enrichment 
3. SNAI1 expression level 
4. VEGFA promoter methylation level 
5. TP53 enhancer H3K27ac enrichment 
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6. MYC expression level 
7. PTEN promoter methylation level 
8. CCND1 enhancer H3K27ac enrichment 
9. CDKN2A expression level 
10. E-cadherin promoter methylation level 

These features highlight the importance of EMT-related genes and key oncogenes/tumor 
suppressors in determining cancer risk, providing potential targets for early intervention and 
monitoring. 

3. Targeting microbial carcinogen metabolism for cancer prevention 

3.1 In silico screening of microbial enzyme inhibitors 
Based on our findings, we hypothesized that modulating microbial carcinogen metabolism could 
prevent epigenetic dysregulation and subsequent tumor development. We used in silico screening to 
identify potential inhibitors of bacterial enzymes involved in BBN metabolism, focusing on 
nitroreductases and β-glucuronidases. 

Virtual screening workflow: 
1. Compound library: 1 million compounds from the ZINC database (drug-like subset) 
2. Target structures:  
   - Bacterial nitroreductase (PDB ID: 5J8G) 
   - Bacterial β-glucuronidase (PDB ID: 3K46) 
3. Docking software: AutoDock Vina 1.2.0 
4. Docking parameters: 
   - Grid box size: 25 × 25 × 25 Å 
   - Exhaustiveness: 16 
   - Number of poses: 10 
5. Post-docking filters: 
   - Binding energy cutoff: < -8.0 kcal/mol 
   - Lipinski's rule of five compliance 
   - PAINS filter 
   - Predicted aqueous solubility (logS > -4) 

Our screen identified 127 hit compounds, with the top candidate (compound X) showing high 
binding affinity to the bacterial nitroreductase enzyme: 
- Binding energy (ΔG): -11.2 kcal/mol 
- Ligand efficiency: 0.48 kcal/mol per heavy atom 
- Predicted IC50: 6.2 nM 

Key interactions of compound X with bacterial nitroreductase: 
- Hydrogen bonds: Arg102, His128, Tyr144 
- π-π stacking: Phe124, Tyr68 
- Hydrophobic interactions: Ile165, Val171, Leu103 

Compound X also showed favorable ADMET properties: 
- LogP: 2.8 
- Topological polar surface area: 78.5 Å² 
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- Human intestinal absorption: 92% (predicted) 
- Plasma protein binding: 85% (predicted) 
- hERG inhibition: Low risk (IC50 > 10 µM predicted) 

3.2 Molecular dynamics simulations of compound X-enzyme interactions 
To further characterize the mechanism of action of compound X, we performed extensive molecular 
dynamics simulations (3 µs total simulation time) of the compound in complex with the bacterial 
nitroreductase enzyme. 

Simulation details: 
- Force field: AMBER ff14SB for protein, GAFF2 for compound X 
- Water model: TIP3P 
- System size: ~80,000 atoms 
- Simulation conditions: NPT ensemble, 310 K, 1 atm 
- Integration time step: 2 fs 
- Replica exchange molecular dynamics: 8 replicas spanning 300-400 K 

Our simulations revealed that compound X forms stable hydrogen bonds with key catalytic 
residues: 
- Arg102: 92% occupancy, average distance 2.8 ± 0.3 Å 
- His128: 88% occupancy, average distance 3.0 ± 0.4 Å 
- Tyr144: 85% occupancy, average distance 2.9 ± 0.3 Å 

Additionally, we observed a significant conformational change in the enzyme's active site upon 
compound X binding: 
- RMSD of active site residues: 2.8 ± 0.5 Å (compared to apo structure) 
- Reduction in active site volume: 28 ± 4% 
- Altered dynamics of catalytic loop (residues 120-130): Decreased flexibility (RMSF reduced by 
45%) 

These structural changes likely contribute to the inhibition of nitroreductase activity by compound 
X. Free energy calculations using the MM-PBSA method confirmed the strong binding affinity: 
- ΔGbinding: -12.3 ± 0.8 kcal/mol 
- Enthalpic contribution (ΔH): -18.7 ± 1.2 kcal/mol 
- Entropic contribution (-TΔS): 6.4 ± 0.9 kcal/mol 

3.3 Virtual clinical trials using agent-based modeling 
To test the efficacy of compound X in preventing microbiome-mediated carcinogenesis, we 
conducted virtual clinical trials using agent-based modeling. We developed a multi-scale model 
incorporating gut microbial dynamics, host-microbe interactions, and cellular-level processes in 
bladder epithelium. 

Model components: 
1. Gut microbiome module: 
   - 100 bacterial species with defined metabolic capabilities 
   - Dynamic growth and competition based on Lotka-Volterra equations 
   - Nutrient availability and pH-dependent growth rates 
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2. Host pharmacokinetics module: 
   - Physiologically-based pharmacokinetic (PBPK) model for BBN and BCPN 
   - Organ compartments: GI tract, liver, kidney, bladder, systemic circulation 
   - First-order absorption and elimination kinetics 

3. Bladder epithelium module: 
   - 10,000 individual cells with unique gene expression profiles 
   - Cell division, death, and mutation processes 
   - Epigenetic landscape modeled using Potts model 

4. Carcinogenesis module: 
   - Multistage carcinogenesis model (initiation, promotion, progression) 
   - Stochastic accumulation of driver mutations 
   - Clonal expansion of transformed cells 

The model simulated a population of 10,000 virtual patients over a 10-year period, with varying 
levels of BBN exposure and microbiome compositions. Patients were randomly assigned to receive 
either compound X or placebo, with the following dosing regimen: 
- Compound X: 100 mg oral dose, once daily 
- Placebo: Identical appearance, once daily 

Primary endpoint: Bladder cancer incidence at 10 years 
Secondary endpoints:  
- BCPN production in the gut 
- Epigenetic alterations in bladder epithelium 
- Expression of key oncogenes and tumor suppressors 

Results of the virtual clinical trial: 
1. Bladder cancer incidence: 
   - Compound X group: 3.2% (95% CI: 2.8-3.6%) 
   - Placebo group: 5.1% (95% CI: 4.6-5.6%) 
   - Hazard ratio: 0.62 (95% CI: 0.51-0.75, p < 0.001) 

2. BCPN production: 
   - Mean reduction in compound X group: 73% (95% CI: 68-78%, p < 0.001) 

3. Epigenetic alterations: 
   - 45% fewer DMRs and DARs in compound X group (p < 0.001) 

4. Gene expression changes: 
   - Significant reduction in oncogene expression (e.g., MYC: -62%, CCND1: -58%) 
   - Significant increase in tumor suppressor expression (e.g., TP53: +43%, PTEN: +39%) 

Subgroup analysis revealed that the efficacy of compound X was influenced by baseline 
microbiome composition: 
- High Firmicutes/Bacteroidetes ratio: Greater reduction in cancer risk (HR: 0.54, 95% CI: 
0.42-0.69) 
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- Low Firmicutes/Bacteroidetes ratio: Moderate reduction in cancer risk (HR: 0.71, 95% CI: 
0.58-0.87) 

These results suggest that compound X is effective in reducing microbiome-mediated 
carcinogenesis, with potentially greater benefits in individuals with specific microbiome profiles. 

Discussion 

Our comprehensive in silico investigation provides compelling evidence for a novel mechanism 
linking gut microbial metabolism of environmental carcinogens to epigenetic dysregulation and 
tumor development in distal organs. By integrating advanced computational approaches, including 
stochastic modeling, molecular dynamics simulations, and machine learning, we have elucidated a 
complex pathway involving microbiome-dependent carcinogen biotransformation, altered 
epigenetic landscapes, and oncogenic gene expression. 

The computational model of BBN metabolism developed in this study offers unprecedented insights 
into the role of the gut microbiome in modulating carcinogen exposure. Our findings highlight the 
importance of bacterial enzymes, particularly nitroreductases and β-glucuronidases, in generating 
the carcinogenic metabolite BCPN. This underscores the need to consider microbial 
biotransformation when evaluating the carcinogenic potential of environmental compounds. 

Our molecular dynamics simulations and in silico ChIP-seq analyses reveal a direct link between 
microbiome-derived metabolites and epigenetic alterations in host tissues. The stable interactions 
observed between BCPN and epigenetic modifiers (DNMTs and HDACs) provide a mechanistic 
explanation for the widespread changes in DNA methylation and histone acetylation patterns. These 
epigenetic alterations, particularly in promoter regions of cancer-related genes, appear to be a key 
driver of the observed transcriptional changes and cellular transformation. 

The integrative network analysis and machine learning approaches employed in this study offer a 
systems-level perspective on the consequences of microbiome-mediated carcinogen metabolism. 
The identification of a key gene module associated with EMT and stemness suggests that microbial 
metabolites may promote cancer development by inducing a more aggressive, stem-like phenotype 
in bladder epithelial cells. Furthermore, the predictive model developed for long-term cancer risk 
assessment demonstrates the potential of using microbiome-derived signatures as early biomarkers 
for cancer susceptibility. 

Perhaps most importantly, our work identifies a promising new avenue for cancer prevention 
through targeted modulation of microbial carcinogen metabolism. The virtual clinical trial results 
for compound X demonstrate the potential of this approach in reducing cancer risk associated with 
environmental carcinogen exposure. By inhibiting bacterial enzymes responsible for generating 
carcinogenic metabolites, we may be able to interrupt the cascade of events leading to epigenetic 
dysregulation and tumor development. 

The observed influence of baseline microbiome composition on the efficacy of compound X 
highlights the potential for personalized cancer prevention strategies. Future studies should explore 
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the possibility of combining microbiome modulation with targeted enzyme inhibition to maximize 
the protective effects against environmental carcinogens. 

While our study provides valuable insights, it is important to note its limitations. As an in silico 
investigation, our findings require validation through in vitro and in vivo experiments. The 
complexity of the human microbiome and inter-individual variability in microbial composition may 
influence the generalizability of our results. Additionally, our focus on a single carcinogen (BBN) 
and cancer type (bladder cancer) necessitates further studies to determine the broader applicability 
of our findings to other environmental carcinogens and cancer types. 

Future directions for this research should include: 
1. Experimental validation of key predictions, including the effects of compound X on microbial 
carcinogen metabolism and host epigenetics. 
2. Extension of the computational framework to other environmental carcinogens and cancer types. 
3. Integration of host genetic factors to develop more comprehensive models of cancer 
susceptibility. 
4. Exploration of combination therapies targeting both microbial metabolism and host epigenetic 
processes. 
5. Development of non-invasive biomarkers based on microbiome composition and metabolites for 
early cancer risk assessment. 

In conclusion, this comprehensive computational study reveals a critical role for microbiome-
mediated epigenetic regulation in carcinogen-induced tumorigenesis and opens new avenues for 
cancer prevention strategies targeting the gut-microbiome-host axis. Our findings have important 
implications for toxicological risk assessment, highlighting the need to incorporate microbial 
metabolism into current paradigms. Moreover, the computational framework developed in this 
study provides a valuable resource for future investigations into the complex interactions between 
the microbiome, environmental exposures, and human health. 

Methods 

1. Computational modeling of carcinogen metabolism 
We developed a stochastic model of BBN metabolism incorporating both host and microbial 
enzymatic pathways using the Gillespie algorithm. The model included 47 reactions and 32 
metabolites, with kinetic parameters derived from literature and our previous experimental data [4]. 
Monte Carlo simulations (n = 100,000) were performed to estimate BCPN production under various 
conditions. Sensitivity analysis was conducted using the Morris method to identify key enzymes 
influencing BCPN production. 

2. Molecular dynamics simulations 
Interactions between BCPN and epigenetic modifiers (DNMT1, DNMT3A, HDAC1, and HDAC2) 
were modeled using GROMACS 2021.4 software. Systems were solvated in TIP3P water, energy-
minimized, and equilibrated before 500 ns production runs. Binding free energies were calculated 
using the MM-PBSA method implemented in g_mmpbsa. 

3. In silico ChIP-seq analysis 
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We developed a machine learning model to predict genome-wide binding patterns of DNMTs and 
HDACs in the presence and absence of BCPN. The model was trained on publicly available ChIP-
seq datasets from ENCODE and GEO databases using a convolutional neural network architecture. 
Differential binding analysis was performed using the DiffBind R package. 

4. In silico RNA-seq and gene regulatory network analysis 
Virtual RNA-seq experiments were conducted using a gene regulatory network model incorporating 
identified DMRs and DARs. The model was implemented using the GeneNetWeaver framework 
with the following modifications: 
- Integration of epigenetic data as weights for transcription factor binding site accessibility 
- Incorporation of microRNA-mediated post-transcriptional regulation 
- Stochastic bursting kinetics for gene expression 

Differential expression analysis was performed using DESeq2 with the following parameters: 
- Significance threshold: FDR < 0.01 
- Log2 fold change threshold: |log2FC| > 1 
- Independent filtering: enabled 
- Cook's distance outlier detection: enabled 

Gene set enrichment analysis (GSEA) was conducted using the fgsea R package with the following 
settings: 
- Number of permutations: 10,000 
- Minimum set size: 15 genes 
- Maximum set size: 500 genes 
- Gene set databases: MSigDB Hallmark, KEGG, and GO Biological Process 

5. Integrative network analysis 
Weighted gene co-expression network analysis (WGCNA) was performed using the WGCNA R 
package with the following parameters: 
- Soft-thresholding power: 6 (determined by scale-free topology criterion) 
- Minimum module size: 30 genes 
- Deep split: 2 
- Merge cut height: 0.25 
- Topological overlap matrix (TOM) type: signed 

Module preservation analysis was conducted using 1,000 permutations to assess the robustness of 
identified modules. Functional enrichment of modules was assessed using the clusterProfiler R 
package with the following databases: 
- Gene Ontology (Biological Process, Molecular Function, Cellular Component) 
- KEGG Pathways 
- Reactome Pathways 

Network motif analysis was performed using the FANMOD algorithm with the following settings: 
- Motif size: 3-4 nodes 
- Random network model: Erdős-Rényi 
- Number of random networks: 1,000 
- Significance threshold: p < 0.01 (Bonferroni-corrected) 
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6. Machine learning prediction model 
A deep neural network was developed using TensorFlow 2.7 to predict cancer risk based on 
simulated longitudinal data of microbiome-derived BCPN exposure and epigenetic alterations. The 
model architecture consisted of: 
- Input layer: 1,024 neurons (512 epigenetic features, 512 gene expression features) 
- 5 hidden layers with 256 neurons each, using ReLU activation functions 
- Dropout regularization (rate = 0.3) between hidden layers 
- Output layer: 1 neuron with sigmoid activation 

The model was trained using the following hyperparameters: 
- Optimizer: Adam (learning rate = 0.0001, β1 = 0.9, β2 = 0.999) 
- Loss function: Binary cross-entropy 
- Batch size: 64 
- Epochs: 100 (with early stopping, patience = 10) 
- Data split: 70% training, 15% validation, 15% test 

Feature importance was assessed using integrated gradients and SHAP (SHapley Additive 
exPlanations) values. 

7. Virtual compound screening and docking 
In silico screening of potential inhibitors was performed using AutoDock Vina 1.2.0. A library of 1 
million compounds from the ZINC database (drug-like subset) was screened against the crystal 
structures of bacterial nitroreductase (PDB ID: 5J8G) and β-glucuronidase (PDB ID: 3K46). 
Docking simulations were conducted with the following parameters: 
- Grid box size: 25 × 25 × 25 Å centered on the enzyme's active site 
- Exhaustiveness: 16 
- Number of poses: 10 

Post-docking filters were applied: 
- Binding energy cutoff: < -8.0 kcal/mol 
- Lipinski's rule of five compliance 
- PAINS (Pan-Assay Interference Compounds) filter 
- Predicted aqueous solubility (logS > -4) 

ADMET properties were predicted using SwissADME and admetSAR tools. 

8. Molecular dynamics simulations of compound X-enzyme interactions 
Molecular dynamics simulations of compound X in complex with bacterial nitroreductase were 
performed using GROMACS 2021.4 with the following setup: 
- Force field: AMBER ff14SB for protein, GAFF2 for compound X 
- Water model: TIP3P 
- System size: ~80,000 atoms 
- Simulation conditions: NPT ensemble, 310 K, 1 atm 
- Integration time step: 2 fs 
- Replica exchange molecular dynamics: 8 replicas spanning 300-400 K 

Analysis of MD trajectories included: 
- RMSD and RMSF calculations 
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- Hydrogen bond analysis (cutoffs: 3.5 Å distance, 30° angle) 
- Principal component analysis of protein dynamics 
- Free energy calculations using MM-PBSA method 

9. Agent-based modeling of virtual clinical trials 
An agent-based model was developed using NetLogo 6.2 to simulate the effects of compound X on 
microbiome-mediated carcinogenesis in a virtual patient population. The model incorporated the 
following modules: 

a) Gut microbiome module: 
- 100 bacterial species with defined metabolic capabilities 
- Dynamic growth and competition based on Lotka-Volterra equations 
- Nutrient availability and pH-dependent growth rates 
- Stochastic horizontal gene transfer events 

b) Host pharmacokinetics module: 
- Physiologically-based pharmacokinetic (PBPK) model for BBN and BCPN 
- Organ compartments: GI tract, liver, kidney, bladder, systemic circulation 
- First-order absorption and elimination kinetics 
- Inter-individual variability in enzyme expression (CV = 30%) 

c) Bladder epithelium module: 
- 10,000 individual cells with unique gene expression profiles 
- Cell division, death, and mutation processes 
- Epigenetic landscape modeled using Potts model 
- Cellular senescence and telomere dynamics 

d) Carcinogenesis module: 
- Multistage carcinogenesis model (initiation, promotion, progression) 
- Stochastic accumulation of driver mutations (based on Poisson process) 
- Clonal expansion of transformed cells 
- Tumor microenvironment interactions 

Simulations were run for 10,000 virtual patients over a 10-year period, with varying levels of BBN 
exposure and microbiome compositions. Statistical analysis of virtual clinical trial results included: 
- Kaplan-Meier survival analysis 
- Cox proportional hazards regression 
- Mixed-effects models for longitudinal data 
- Subgroup analysis based on microbiome composition 

All statistical analyses were performed using R 4.1.2 with appropriate packages (survival, lme4, 
ggplot2). Multiple testing corrections were applied using the Benjamini-Hochberg method where 
applicable. 
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