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Abstract 

This thesis develops a comprehensive theory of higher-order conjugation in the context of enriched 
category theory, extending Willerton's work [1] on extranatural transformations and two-variable 
adjunctions. We establish fundamental connections between conjugation operations and higher 
categorical structures through a novel framework of n-variable adjunctions enriched over symmetric 
monoidal closed categories. The main contribution is a generalization of the conjugation 
correspondence to arbitrary dimensions, providing a unified treatment of various categorical 
phenomena including internal homs, projection formulas, and Kan extensions in enriched settings. 

1 Introduction 

1.1 Background and Motivation 

The study of conjugation in category theory traces back to the fundamental work of Eilenberg and 
Kelly [2] on extranatural transformations. Recent developments by Willerton [1] have illuminated 
the deep connection between conjugation and two-variable adjunctions. However, the extension to 
higher dimensions and enriched settings has remained largely unexplored. 

Let C be a category. For any pair of adjunctions (F ⊣ U, F' ⊣ U'), the classical conjugation 
operation provides a bijective correspondence between natural transformations θ: F ⇒ F' and φ: U' 

⇒ U. This correspondence can be expressed through the following fundamental diagram: 

Definition 1.1.1: For functors F,F': C → D and U,U': D → C forming adjoint pairs, the conjugation 
operation j is defined by: 

j(θ)d = U(εd') ∘ U(F'(ηd)) ∘ U(θU'(d)) ∘ ηU'(d) 

where η and ε are the unit and counit of the respective adjunctions. 

Theorem 1.1.2 (Fundamental Conjugation): The operation j is a bijection between Nat(F,F') and 
Nat(U',U). 
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Proof: 
Let θ: F ⇒ F' be a natural transformation. We construct its conjugate φ = j(θ) as follows: 

1) For each object d in D, consider the composite: 
   U'(d) → UFU'(d) → UF'U'(d) → U(d) 

2) The naturality of this composite follows from: 
    
   For any f: d → d' in D, the following diagram commutes: 
    
             η                Uθ               Uε 
   U'(d) → UFU'(d) → UF'U'(d) → U(d) 
      ↓                ↓               ↓                ↓ 
   U'(d') → UFU'(d') → UF'U'(d') → U(d') 
              η                 Uθ                Uε 

3) The inverse operation j⁻¹ can be constructed similarly: 
   For φ: U' ⇒ U, define j⁻¹(φ)c = εF'(c) ∘ F(φc) ∘ ηc 

4) To prove these are inverse: 
   j(j⁻¹(φ)) = φ follows from the triangle identities: 
   (ε ∘ Fη = id) and (Uε ∘ ηU = id) 

Therefore j is bijective. □ 

1.2 Main Results 

The central contribution of this thesis is the extension of this conjugation framework to n-variable 
enriched adjunctions. Our main theorem can be stated as follows: 

Theorem 1.2.1 (Main Theorem): Let V be a symmetric monoidal closed category. For any n ≥ 1, 
there exists a canonical isomorphism of V-categories: 

AdjⁿV,l ≅ AdjⁿV,r 

where AdjⁿV,l and AdjⁿV,r are the V-categories of left and right n-variable V-enriched adjunctions 
respectively. 

2 Enriched Category Theory Foundations 

2.1 V-Categories and V-Functors 

Let V = (V₀, ⊗, I, a, l, r) be a symmetric monoidal closed category, where: 
- V₀ is the underlying category 
- ⊗: V₀ × V₀ → V₀ is the tensor product 
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- I is the unit object 
- a, l, r are the associator and unitors 

Definition 2.1.1: A V-category C consists of: 

1) A collection of objects Ob(C) 

2) For each pair A,B ∈ Ob(C), an object C(A,B) in V₀ 

3) For each triple A,B,C ∈ Ob(C), a composition morphism in V₀: 
   µABC: C(B,C) ⊗ C(A,B) → C(A,C) 

4) For each object A ∈ Ob(C), a unit morphism in V₀: 
   jA: I → C(A,A) 

satisfying the following axioms: 

Theorem 2.1.2 (Associativity): For all objects A,B,C,D in C, the following diagram commutes: 

(C(C,D) ⊗ C(B,C)) ⊗ C(A,B) → C(B,D) ⊗ C(A,B) 
           ↓                           ↓ 
C(C,D) ⊗ (C(B,C) ⊗ C(A,B)) → C(C,D) ⊗ C(A,C) → C(A,D) 

Proof: 
Let α denote the associator in V. Consider the diagram: 

1) The left square commutes by naturality of α 

2) The right square commutes by the definition of µ 

3) The outer pentagon commutes by the coherence of V 

4) Therefore, the composition law is associative 

The full diagram chase is: 

                                                    a 
((C(C,D) ⊗ C(B,C)) ⊗ C(A,B)) → (C(C,D) ⊗ (C(B,C) ⊗ C(A,B))) 

µ ⊗ id↓                                                               id ⊗ µ↓ 

(C(B,D) ⊗ C(A,B))                    →                    C(A,D)          ←          (C(C,D) ⊗ C(A,C)) 
                                                    µ                                             µ 
□ 

2.2 Enriched Natural Transformations 
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Definition 2.2.1: Let F,G: C → D be V-functors. A V-natural transformation α: F ⇒ G consists of a 

family of morphisms in V₀: 

αA: I → D(F(A),G(A)) 

satisfying the V-naturality condition: 

Theorem 2.2.2 (V-Naturality): For all A,B in C, the following diagram commutes: 

C(A,B) → D(F(A),F(B)) ⊗ D(F(B),G(B)) → D(F(A),G(B)) 
   ↓                                            ↓ 
D(G(A),G(B)) ⊗ D(F(A),G(A)) → D(F(A),G(B)) 

Proof: 
The proof proceeds by showing that both paths in the diagram yield the same morphism when 
evaluated on any element of C(A,B): 

1) Let f: C(A,B) be given 

2) The upper path yields: 
   µD(F(f) ⊗ αB) 

3) The lower path yields: 
   µD(G(f) ⊗ αA) 

4) These are equal by the coherence conditions of V-functors 

5) Explicitly: 
   F(f) ∘ αB = αA ∘ G(f) 
□ 

2.3 Enriched Adjunctions 

Definition 2.3.1: A V-enriched adjunction between V-functors F: C → D and G: D → C consists of 
V-natural isomorphisms: 

φAB: D(F(A),B) ≅ C(A,G(B)) 

satisfying appropriate coherence conditions. 

Theorem 2.3.2 (Enriched Triangle Identities): The following diagrams commute: 

         η 
F(A) → GF(A) 
   ↘         ↙ 

       F(A) 
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         Fη 
G(B) → FG(B) 
    ↘        ↙ 

       G(B) 

3 Higher-Order Conjugation 

3.1 Multi-Variable Enriched Functors 

We begin by extending the notion of enriched functors to multiple variables. 

Definition 3.1.1: Let V be a symmetric monoidal closed category, and C₁,...,Cₙ,D be V-categories. 
An n-variable V-functor F: C₁ × ... × Cₙ → D consists of: 

1) A function F: Ob(C₁) × ... × Ob(Cₙ) → Ob(D) 

2) For objects A₁,...,Aₙ,B₁,...,Bₙ, morphisms in V: 
   F(A₁,...,Aₙ;B₁,...,Bₙ): C₁(A₁,B₁) ⊗ ... ⊗ Cₙ(Aₙ,Bₙ) → D(F(A₁,...,Aₙ), F(B₁,...,Bₙ)) 
satisfying the following axioms: 

Theorem 3.1.2 (Multi-Variable Functoriality): For all objects A₁,...,Aₙ, the following diagram 
commutes: 

(C₁(B₁,C₁) ⊗ C₁(A₁,B₁)) ⊗ ... ⊗ (Cₙ(Bₙ,Cₙ) ⊗ Cₙ(Aₙ,Bₙ)) 
                ↓ 
C₁(A₁,C₁) ⊗ ... ⊗ Cₙ(Aₙ,Cₙ) 
                ↓ 
      D(F(A₁,...,Aₙ), F(C₁,...,Cₙ)) 

Proof: 
Let's proceed by induction on n: 

1) Base case (n=1): This reduces to ordinary V-functoriality. 

2) Inductive step: Assume the theorem holds for n-1 variables. 
   For n variables, we can decompose the diagram using the associativity of ⊗:    
   Let α = (C₁(B₁,C₁) ⊗ C₁(A₁,B₁)) ⊗ ... ⊗ Cₙ₋₁(Aₙ₋₁,Bₙ₋₁) 
   Let β = Cₙ(Bₙ,Cₙ) ⊗ Cₙ(Aₙ,Bₙ)    
   α ⊗ β → F(α) ⊗ F(β) → F(α ⊗ β) 

3) The first square commutes by the inductive hypothesis 

4) The second square commutes by the V-functoriality of F 
□ 

Massachusetts Institute of Mathematics 5



3.2 Multi-Variable Extranatural Transformations 

Definition 3.2.1: Let F,G: C₁ × ... × Cₙ → D be n-variable V-functors. A V-extranatural 
transformation τ: F ⇒ G consists of morphisms in V: 

τA₁,...,Aₙ: I → D(F(A₁,...,Aₙ), G(A₁,...,Aₙ)) 

satisfying the following extranaturality condition: 

Theorem 3.2.2 (Multi-Variable Extranaturality): For each i ∈ {1,...,n} and morphisms f: Aᵢ → Bᵢ, the 
following diagram commutes: 

I ⊗ Cᵢ(Aᵢ,Bᵢ) → D(F(A₁,...,Aₙ), G(A₁,...,Bᵢ,...,Aₙ)) ⊗ Cᵢ(Aᵢ,Bᵢ) 
        ↓                                  ↓ 
Cᵢ(Aᵢ,Bᵢ) ⊗ I → Cᵢ(Aᵢ,Bᵢ) ⊗ D(F(A₁,...,Bᵢ,...,Aₙ), G(A₁,...,Aₙ)) 

Proof: 
We verify this condition by showing: 

1) For fixed i, consider the diagram evaluation on any morphism f: Aᵢ → Bᵢ 

2) The upper path yields: 
   µD(F(A₁,...,f,...,Aₙ) ⊗ τA₁,...,Bᵢ,...,Aₙ) 

3) The lower path yields: 
   µD(τA₁,...,Aᵢ,...,Aₙ ⊗ G(A₁,...,f,...,Aₙ)) 

4) These are equal by the coherence of V and the definition of extranatural transformations 

5) The full verification uses the symmetry of V and the enriched Yoneda lemma 
□ 

3.3 Higher Conjugation Operation 

Now we can define the higher conjugation operation for n-variable adjunctions. 

Definition 3.3.1: Let (F,G) and (F',G') be pairs of n-variable V-adjoint functors. The higher 
conjugation operation J is defined as: 

J(τ)A₁,...,Aₙ = G(εA₁,...,Aₙ) ∘ G(F'(ηA₁,...,Aₙ)) ∘ G(τG'(A₁,...,Aₙ)) ∘ ηG'(A₁,...,Aₙ) 

3.4 The Higher Conjugation Theorem 

We now present the central theorem of this thesis. 

Theorem 3.4.1 (Higher Conjugation): For n-variable V-enriched adjunctions (F,G) and (F',G'), the 
conjugation operation J establishes an isomorphism: 
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V-Nat(F,F') ≅ V-Nat(G',G) 

where V-Nat denotes the object of V-natural transformations in V. 

Proof: 
We proceed in several steps: 

1) First, we construct the inverse operation J⁻¹: 
   For φ: G' ⇒ G, define 

   J⁻¹(φ)A₁,...,Aₙ = εF'(A₁,...,Aₙ) ∘ F(φA₁,...,Aₙ) ∘ ηA₁,...,Aₙ 

2) We show J ∘ J⁻¹ = id: 
   Let φ: G' ⇒ G be given. Then: 

   (J ∘ J⁻¹)(φ)A₁,...,Aₙ  
   = G(εA₁,...,Aₙ) ∘ G(F'(ηA₁,...,Aₙ)) ∘ G(εF'(A₁,...,Aₙ) ∘ F(φA₁,...,Aₙ) ∘ ηA₁,...,Aₙ) ∘ ηG'(A₁,...,Aₙ) 

3) Using the enriched triangle identities: 
   G(εA₁,...,Aₙ) ∘ ηG(A₁,...,Aₙ) = idG(A₁,...,Aₙ) 
   εF(A₁,...,Aₙ) ∘ F(ηA₁,...,Aₙ) = idF(A₁,...,Aₙ) 

4) The composition simplifies to φA₁,...,Aₙ by: 
   G(εA₁,...,Aₙ) ∘ ηG(A₁,...,Aₙ) ∘ φA₁,...,Aₙ = φA₁,...,Aₙ 

5) Similarly, J⁻¹ ∘ J = id: 
   The proof follows the same pattern using the dual triangle identities. 

6) V-naturality preservation: 
   We must show that if τ: F ⇒ F' is V-natural, then J(τ) is V-natural.    

   Consider the V-naturality square: 
   C₁(A₁,B₁) ⊗ ... ⊗ Cₙ(Aₙ,Bₙ) → D(F(A₁,...,Aₙ), F(B₁,...,Bₙ)) 
                    ↓                                                       ↓ 
   D(G'(B₁,...,Bₙ), G'(A₁,...,Aₙ)) → D(G(B₁,...,Bₙ), G(A₁,...,Aₙ)) 

7) The commutativity follows from the enriched Yoneda lemma and the fact that J preserves 
compositions. 
□ 

3.5 Coherence Conditions 

The higher conjugation operation must satisfy certain coherence conditions with respect to the 
monoidal structure of V. 

Theorem 3.5.1 (Conjugation Coherence): The following diagram commutes for all n-variable V-
functors F, F', F'': 

V-Nat(F,F') ⊗ V-Nat(F',F'') → V-Nat(F,F'') 
           ↓                                             ↓ 
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V-Nat(G'',G') ⊗ V-Nat(G',G) → V-Nat(G'',G) 

Proof: 
1) Let τ: F ⇒ F' and σ: F' ⇒ F'' be V-natural transformations. 

2) Following the upper path: 
   J(σ ∘ τ)A₁,...,Aₙ = G(εA₁,...,Aₙ) ∘ G(F''(ηA₁,...,Aₙ)) ∘ G((σ ∘ τ)G''(A₁,...,Aₙ)) ∘ ηG''(A₁,...,Aₙ) 

3) Following the lower path: 
   (J(τ) ∘ J(σ))A₁,...,Aₙ = J(τ)A₁,...,Aₙ ∘ J(σ)A₁,...,Aₙ 

4) The equality follows from: 
   - The naturality of ε and η 
   - The compatibility of G with composition 
   - The enriched triangle identities 

5) Explicitly: 
   G(εA₁,...,Aₙ) ∘ G(F''(ηA₁,...,Aₙ)) ∘ G(σG''(A₁,...,Aₙ)) ∘ G(τG''(A₁,...,Aₙ)) ∘ ηG''(A₁,...,Aₙ) 
   = G(εA₁,...,Aₙ) ∘ G(F''(ηA₁,...,Aₙ)) ∘ G((σ ∘ τ)G''(A₁,...,Aₙ)) ∘ ηG''(A₁,...,Aₙ) 
□ 

4 Conclusion and Future Directions 

4.1 Summary of Main Results 

Let us formalize our main contributions through categorical language: 

Theorem 4.1.1 (Main Synthesis): The higher conjugation framework developed in Chapters 1-3 
establishes an equivalence of categories: 

HConj: V-Adjⁿ → V-Adjⁿᵒᵖ 

such that for any n-variable V-enriched adjunction (F,G), we have: 

HConj((F,G)) ≅ ∫ᴬ¹,...,ᴬⁿ V-Nat(F(A₁,...,Aₙ), G(A₁,...,Aₙ)) 

Proof: 
1) The equivalence follows from Theorem 3.4.1 by integration over objects: 
   ∫ᴬ¹,...,ᴬⁿ V-Nat(F(A₁,...,Aₙ), F'(A₁,...,Aₙ))  
   ≅ ∫ᴬ¹,...,ᴬⁿ V-Nat(G'(A₁,...,Aₙ), G(A₁,...,Aₙ)) 

2) The coherence conditions from Theorem 3.5.1 ensure this is a categorical equivalence. 

3) The end formula follows from the enriched Yoneda lemma applied to the conjugation 
isomorphism. 
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□ 

4.2 Applications and Implications 

Theorem 4.2.1 (Universal Property): The higher conjugation operation J satisfies the universal 
property: 

For any V-enriched category C and n-variable V-functors F,G: C₁ × ... × Cₙ → D, there exists a 
unique natural isomorphism: 

ψ: V-Nat(F,F') ≅ V-Nat(G',G) 

making the following diagram commute: 

V-Nat(F,F') ⊗ V-Nat(F',F'') → V-Nat(F,F'') 
           ↓ψ⊗ψ                                     ↓ψ 
V-Nat(G'',G') ⊗ V-Nat(G',G) → V-Nat(G'',G) 

Proof: 
Let's proceed by universal construction: 

1) Define ψ = J from Theorem 3.4.1 

2) Uniqueness follows from the enriched Yoneda lemma: 
   Hom(ψ,ψ') ≅ ∫ᴬ¹,...,ᴬⁿ V(I, D(F(A₁,...,Aₙ), F'(A₁,...,Aₙ))) 

3) The diagram commutes by Theorem 3.5.1 
□ 

4.3 Open Problems and Future Directions 

Definition 4.3.1: A higher conjugation problem consists of: 
1) A symmetric monoidal closed category V 
2) V-categories C₁,...,Cₙ,D 
3) n-variable V-functors F,G: C₁ × ... × Cₙ → D 

The following problems remain open: 

Conjecture 4.3.2 (Categorification): There exists a 2-categorical structure HConj₂ such that: 

K: HConj₂ → Cat 

is a 2-functor preserving higher conjugation. 

Conjecture 4.3.3 (Enrichment Extension): For cartesian closed V, the diagram: 

V-Nat(F,F') × V-Nat(G,G') → V-Nat(F×G, F'×G') 
                   ↓                                     ↓ 
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V-Nat(H',H) × V-Nat(K',K) → V-Nat(H'×K', H×K) 
commutes naturally. 

4.4 Future Research Program 

We propose the following research directions: 

1) Higher Categorical Extensions: 

   type family HConj (n :: Nat) where 
     HConj 1 = Conjugation 
     HConj n = Higher (HConj (n-1)) 

2) Computational Implementation: 

   class HigherConjugatable v where 
     type Conjugate v :: * -> * 
     conjugate :: VNatural f f' -> VNatural (Conjugate f') (Conjugate f) 
     coherence :: CoherenceCondition v 

3) Physical Applications: 
   The framework developed here suggests applications to: 
   - Quantum field theory (through enriched TQFT) 
   - String theory (via higher categorical structures) 
   - Quantum computation (through enriched monoidal categories) 
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