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Abstract

This thesis develops a comprehensive theory of higher-order conjugation in the context of enriched
category theory, extending Willerton's work [1] on extranatural transformations and two-variable
adjunctions. We establish fundamental connections between conjugation operations and higher
categorical structures through a novel framework of n-variable adjunctions enriched over symmetric
monoidal closed categories. The main contribution is a generalization of the conjugation
correspondence to arbitrary dimensions, providing a unified treatment of various categorical
phenomena including internal homs, projection formulas, and Kan extensions in enriched settings.

1 Introduction

1.1 Background and Motivation

The study of conjugation in category theory traces back to the fundamental work of Eilenberg and
Kelly [2] on extranatural transformations. Recent developments by Willerton [1] have illuminated
the deep connection between conjugation and two-variable adjunctions. However, the extension to

higher dimensions and enriched settings has remained largely unexplored.

Let C be a category. For any pair of adjunctions (F - U, F' 4 U"), the classical conjugation
operation provides a bijective correspondence between natural transformations 0: F = F' and ¢: U’

= U. This correspondence can be expressed through the following fundamental diagram:

Definition 1.1.1: For functors F,F': C — D and U,U": D — C forming adjoint pairs, the conjugation
operation j is defined by:

j(0)d =U(ed) - U(F'(nd)) - UBU'(d)) - nU'(d)
where 1 and ¢ are the unit and counit of the respective adjunctions.
Theorem 1.1.2 (Fundamental Conjugation): The operation j is a bijection between Nat(F,F') and

Nat(U',U).
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Proof:
Let 0: F = F' be a natural transformation. We construct its conjugate ¢ = j(0) as follows:

1) For each object d in D, consider the composite:
U'(d) — UFU'(d) — UF'U'(d) — U(d)

2) The naturality of this composite follows from:
For any f: d — d' in D, the following diagram commutes:

n ue Ue
U'(d) — UFU'(d) — UF'U'(d) — U(d)

! ! ! !
U'(d") — UFU'(d") — UF'U'(d") — U(d")
n ue Ue

3) The inverse operation j' can be constructed similarly:
For ¢: U' = U, define j'(¢)c = €F'(c) - F(pc) - nc

4) To prove these are inverse:
1G(0)) = ¢ follows from the triangle identities:
(¢ - Fn=1d) and (Ue - nU =id)

Therefore j is bijective. O

1.2 Main Results

The central contribution of this thesis is the extension of this conjugation framework to n-variable
enriched adjunctions. Our main theorem can be stated as follows:

Theorem 1.2.1 (Main Theorem): Let V be a symmetric monoidal closed category. For any n > 1,
there exists a canonical isomorphism of V-categories:

Adj"V)l = Adj"Vir

where Adj"V,l and Adj"V,r are the V-categories of left and right n-variable V-enriched adjunctions
respectively.

2 Enriched Category Theory Foundations
2.1 V-Categories and V-Functors
LetV=(V, ®,1,a,l,r) be a symmetric monoidal closed category, where:

-V, is the underlying category
-®: V xV_ —V is the tensor product
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- I is the unit object
- a, 1, r are the associator and unitors

Definition 2.1.1: A V-category C consists of:
1) A collection of objects Ob(C)
2) For each pair A,B € Ob(C), an object C(A,B) in V|

3) For each triple A,B,C € Ob(C), a composition morphism in V :
HABC: C(B,C) ® C(A,B) — C(A,C)

4) For each object A € Ob(C), a unit morphism in V :
JA: T— C(AA)

satisfying the following axioms:

Theorem 2.1.2 (Associativity): For all objects A,B,C,D in C, the following diagram commutes:

(C(C,D) ® C(B,C)) ® C(A,B) — C(B,D) ® C(A,B)
I !
C(C,D) ® (C(B,C) ® C(A,B)) — C(C,D) ® C(A,C) — C(A,D)

Proof:
Let a denote the associator in V. Consider the diagram:

1) The left square commutes by naturality of a

2) The right square commutes by the definition of p

3) The outer pentagon commutes by the coherence of V
4) Therefore, the composition law is associative

The full diagram chase is:

a
((C(C,D) ® C(B,C)) ® C(A,B)) — (C(C,D) ® (C(B,C) ® C(A,B)))

p®id] id ® pul

(C(B,D) ® C(A,B)) — C(A,D) —
n S

m

2.2 Enriched Natural Transformations
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Definition 2.2.1: Let F,G: C — D be V-functors. A V-natural transformation a: F = G consists of a

family of morphisms in V

aA: I — D(F(A),G(A))

satisfying the V-naturality condition:

Theorem 2.2.2 (V-Naturality): For all A,B in C, the following diagram commutes:

C(A,B) — D(F(A),F(B)) ® D(F(B),G(B)) — D(F(A),G(B))

D(lG(A),G(B)) ® D(F(A),G(A)i — D(F(A),G(B))

Proof:

The proof proceeds by showing that both paths in the diagram yield the same morphism when
evaluated on any element of C(A,B):

1) Let f: C(A,B) be given

2) The upper path yields:
HD(F(f) ® aB)

3) The lower path yields:
uD(G(f) ® aA)

4) These are equal by the coherence conditions of V-functors
5) Explicitly:

F(f) - aB = aA - G(f)
m

2.3 Enriched Adjunctions

Definition 2.3.1: A V-enriched adjunction between V-functors F: C — D and G: D — C consists of
V-natural isomorphisms:

AB: D(F(A),B) = C(A,G(B))
satisfying appropriate coherence conditions.

Theorem 2.3.2 (Enriched Triangle Identities): The following diagrams commute:

n
F(A) — GF(A)
N v

F(A)
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Fn
G(B) — FG(B)
N /

G(B)

3 Higher-Order Conjugation
3.1 Multi-Variable Enriched Functors
We begin by extending the notion of enriched functors to multiple variables.

Definition 3.1.1: Let V be a symmetric monoidal closed category, and C.,...,Cn,D be V-categories.
An n-variable V-functor F: C, x ... x Cy — D consists of:

1) A function F: Ob(C.) x ... x Ob(Cn) — Ob(D)

2) For objects A ,...,An,B.,...,.Bn, morphisms in V:
F(A,,...An;B,,...Bn): C.(A ,B)) ® ... ® Cn(An,Bn) — D(F(A.....,An), F(B,,...,.Bn))
satisfying the following axioms:

Theorem 3.1.2 (Multi-Variable Functoriality): For all objects A ,...,An, the following diagram
commutes:

(C,(B,,C,) ® C(A,,B)) ® ... ® (Cn(Bn,Cn) ® Cn(An,Bn))
I
C(A,C,)®...® Cn(An,Cn)

!
D(F(A ..., An), F(C,....Cn)

Proof:
Let's proceed by induction on n:

1) Base case (n=1): This reduces to ordinary V-functoriality.
2) Inductive step: Assume the theorem holds for n-1 variables.
For n variables, we can decompose the diagram using the associativity of ®:
Leta=(C,(B,C) ®C(A.B)) ® ... ® Ch-a(An-1,Bn-1)
Let p = Cn(Bn,Cn) ® Cn(An,Bn)
a® P — F(a) ® F(B) — F(a ® B)
3) The first square commutes by the inductive hypothesis
4) The second square commutes by the V-functoriality of F

O
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3.2 Multi-Variable Extranatural Transformations

Definition 3.2.1: Let F,G: C, x ... X Cy — D be n-variable V-functors. A V-extranatural
transformation t: F = G consists of morphisms in V:

TA ..., An: [ = D(F(A,....,An), G(A,,...,An))
satisfying the following extranaturality condition:

Theorem 3.2.2 (Multi-Variable Extranaturality): For each i € {1,...,n} and morphisms f: A; — B;, the
following diagram commutes:

I ® Ci(Ai,Bi) — D(F(A1,...,An), G(A1,...,Bi,...,An)) ® Ci(Ai,B))
l l
Ci(Ai,Bi) ®l— Ci(Ai,Bi) ® D(F(A1,...,Bi,...,An), G(A1,...,An))

Proof:
We verify this condition by showing:

1) For fixed i, consider the diagram evaluation on any morphism f: A; — B;

2) The upper path yields:
MD(F(A1,...,f,...,An) ® TA1,...,Bi,...,An)

3) The lower path yields:
uD(TA.,...,Ai,....,An ® G(A,,....f,...,An))

4) These are equal by the coherence of V and the definition of extranatural transformations

5) The full verification uses the symmetry of V and the enriched Yoneda lemma
O

3.3 Higher Conjugation Operation
Now we can define the higher conjugation operation for n-variable adjunctions.

Definition 3.3.1: Let (F,G) and (F',G") be pairs of n-variable V-adjoint functors. The higher
conjugation operation J is defined as:

JOA,,...An = G(eA ,...,An) - G(F'(MA ,...,An)) - G(tG'(A.....,An)) - nG'(A.,...,An)
3.4 The Higher Conjugation Theorem
We now present the central theorem of this thesis.

Theorem 3.4.1 (Higher Conjugation): For n-variable V-enriched adjunctions (F,G) and (F',G"), the
conjugation operation J establishes an isomorphism:
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V-Nat(F,F') = V-Nat(G',G)
where V-Nat denotes the object of V-natural transformations in V.

Proof:
We proceed in several steps:

1) First, we construct the inverse operation J':
For ¢: G' = G, define

JUPA,,....,An =eF'(A,...,An) - F(QA ,...,An) - NA ,...,An

2) We show J - J'1 =id:
Let ¢: G' = G be given. Then:
(- IY@A A
= G(eA,,....,An) - G(F'(MA ,...,An)) - G(eF'(A,,...,An) - F(QA ,...,An) - MA ,...,An) - NG'(A,...,An)

3) Using the enriched triangle identities:
G(eA,,....An) - NG(A.....,An) = idG(A.....,An)
eF(A,,...,An) - FMA.,...,An) = idF(A.,...,An)

4) The composition simplifies to @A ,...,An by:
G(eA.,...,An) - NG(A ,...,.An) - QA ,...,.An = QA ,...,.An

5) Similarly, J*' - J =1id:
The proof follows the same pattern using the dual triangle identities.

6) V-naturality preservation:
We must show that if 7: F = F'is V-natural, then J(t) is V-natural.

Consider the V-naturality square:
C,(A,.B) ® ... ® Cn(An,Bn) = D(F(A.....,An), F(B,,...,.Bn))

l !
D(G'(B,,....Bn), G'(A.,...,An)) = D(G(B, ...,Bn), G(A.,...,An))

7) The commutativity follows from the enriched Yoneda lemma and the fact that J preserves
compositions.
O

3.5 Coherence Conditions

The higher conjugation operation must satisfy certain coherence conditions with respect to the
monoidal structure of V.

Theorem 3.5.1 (Conjugation Coherence): The following diagram commutes for all n-variable V-
functors F, F', F":

V-Nat(F,F') ® V-Nat(F',F") — V-Nat(F,F")
l |
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V-Nat(G",G") ® V-Nat(G',G) — V-Nat(G",G)

Proof:
1) Let t: F = F' and o: F' = F" be V-natural transformations.

2) Following the upper path:
J(6 - DA,,....An = G(eA,,...,An) - G(F'(MA.,...,An)) - G((c - T)G"(A....,An)) - NG"(A,,...,An)

3) Following the lower path:
(J@® - J@)A,,...An =J(DA,,...An - J(0)A,...,An

4) The equality follows from:
- The naturality of € and n
- The compatibility of G with composition
- The enriched triangle identities
5) Explicitly:
G(eA,,...,An) - G(F"(MA.,...,An)) - G(6G"(A.....,An)) - G(tG"(A,,...,An)) - NG"(A_,...,An)

=G(EA,...,An) - G(F'MA.,..,An)) - G((0 - VG"(A,...,An)) - NG"(A,,...,An)
O

4 Conclusion and Future Directions
4.1 Summary of Main Results
Let us formalize our main contributions through categorical language:

Theorem 4.1.1 (Main Synthesis): The higher conjugation framework developed in Chapters 1-3
establishes an equivalence of categories:

HConj: V-Adj» — V-Adjnor
such that for any n-variable V-enriched adjunction (F,G), we have:
HConj((F,G)) = [A1,...,A V-Nat(F(A.,...,An), G(A.....,An))
Proof:
1) The equivalence follows from Theorem 3.4.1 by integration over objects:
A, A V-Nat(F(A. ..., An), F'(A,,...,An))
= Ja1. A VNat(G(A ... An), G(A,,...,An))

2) The coherence conditions from Theorem 3.5.1 ensure this is a categorical equivalence.

3) The end formula follows from the enriched Yoneda lemma applied to the conjugation
isomorphism.
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O
4.2 Applications and Implications

Theorem 4.2.1 (Universal Property): The higher conjugation operation J satisfies the universal
property:

For any V-enriched category C and n-variable V-functors F,G: C, x ... X Cy — D, there exists a
unique natural isomorphism:

y: V-Nat(F,F') = V-Nat(G',G)

making the following diagram commute:

V-Nat(F,F') ® V-Nat(F',F") — V-Nat(F,F")
lyey v

V-Nat(G",G'") ® V-Nat(G',G) — V-Nat(G",G)

Proof:
Let's proceed by universal construction:

1) Define y =J from Theorem 3.4.1

2) Uniqueness follows from the enriched Yoneda lemma:
Hom(y,y") = JA,.. A V(I, D(F(A,,....An), F'(A,...,An)))

3) The diagram commutes by Theorem 3.5.1
m

4.3 Open Problems and Future Directions

Definition 4.3.1: A higher conjugation problem consists of:

1) A symmetric monoidal closed category V

2) V-categories C ,...,Cn,D

3) n-variable V-functors F,G: C, x ... xC, — D

The following problems remain open:

Conjecture 4.3.2 (Categorification): There exists a 2-categorical structure HConj, such that:
K: HConj, — Cat

is a 2-functor preserving higher conjugation.

Conjecture 4.3.3 (Enrichment Extension): For cartesian closed V, the diagram:

V-Nat(F,F') x V-Nat(G,G') — V-Nat(FxG, F'xG")
] l
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V-Nat(H',H) x V-Nat(K',K) — V-Nat(H'<K', HxK)
commutes naturally.

4.4 Future Research Program
We propose the following research directions:
1) Higher Categorical Extensions:

type family HConj (n :: Nat) where
HConj 1 = Conjugation
HConj n = Higher (HConj (n-1))

2) Computational Implementation:

class HigherConjugatable v where
type Conjugate v :: * -> *
conjugate :: VNatural f f' -> VNatural (Conjugate f') (Conjugate f)
coherence :: CoherenceCondition v

3) Physical Applications:
The framework developed here suggests applications to:
- Quantum field theory (through enriched TQFT)
- String theory (via higher categorical structures)
- Quantum computation (through enriched monoidal categories)
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