Higher-Order Conjugation in Enriched Category Theory

Yu Murakami

Massachusetts Institute of Mathematics • New York General Group info@newyorkgeneralgroup.com

Abstract

This thesis develops a comprehensive theory of higher-order conjugation in the context of enriched category theory, extending Willerton's work [1] on extranatural transformations and two-variable adjunctions. We establish fundamental connections between conjugation operations and higher categorical structures through a novel framework of n-variable adjunctions enriched over symmetric monoidal closed categories. The main contribution is a generalization of the conjugation correspondence to arbitrary dimensions, providing a unified treatment of various categorical phenomena including internal homs, projection formulas, and Kan extensions in enriched settings.

1 Introduction

1.1 Background and Motivation

The study of conjugation in category theory traces back to the fundamental work of Eilenberg and Kelly [2] on extranatural transformations. Recent developments by Willerton [1] have illuminated the deep connection between conjugation and two-variable adjunctions. However, the extension to higher dimensions and enriched settings has remained largely unexplored.

Let C be a category. For any pair of adjunctions (F \dashv U, F' \dashv U'), the classical conjugation operation provides a bijective correspondence between natural transformations θ : F \Rightarrow F' and ϕ : U'

 \Rightarrow U. This correspondence can be expressed through the following fundamental diagram:

Definition 1.1.1: For functors F,F': $C \rightarrow D$ and U,U': $D \rightarrow C$ forming adjoint pairs, the conjugation operation j is defined by:

 $j(\theta)d = U(\epsilon d') \circ U(F'(\eta d)) \circ U(\theta U'(d)) \circ \eta U'(d)$

where η and ϵ are the unit and counit of the respective adjunctions.

Theorem 1.1.2 (Fundamental Conjugation): The operation j is a bijection between Nat(F,F') and Nat(U',U).

Proof:

Let θ : F \Rightarrow F' be a natural transformation. We construct its conjugate $\varphi = j(\theta)$ as follows:

- 1) For each object d in D, consider the composite: $U'(d) \rightarrow UFU'(d) \rightarrow UF'U'(d) \rightarrow U(d)$
- 2) The naturality of this composite follows from:

For any f: $d \rightarrow d'$ in D, the following diagram commutes:

 $\begin{array}{c|c} \eta & U\theta & U\epsilon \\ U'(d) \rightarrow UFU'(d) \rightarrow UF'U'(d) \rightarrow U(d) \\ \downarrow & \downarrow & \downarrow \\ U'(d') \rightarrow UFU'(d') \rightarrow UF'U'(d') \rightarrow U(d') \\ \eta & U\theta & U\epsilon \end{array}$

3) The inverse operation j^{-1} can be constructed similarly: For φ : U' \Rightarrow U, define $j^{-1}(\varphi)c = \epsilon F'(c) \circ F(\varphi c) \circ \eta c$

4) To prove these are inverse: $j(j^{-1}(\varphi)) = \varphi$ follows from the triangle identities: $(\varepsilon \circ F\eta = id)$ and $(U\varepsilon \circ \eta U = id)$

Therefore j is bijective. \Box

1.2 Main Results

The central contribution of this thesis is the extension of this conjugation framework to n-variable enriched adjunctions. Our main theorem can be stated as follows:

Theorem 1.2.1 (Main Theorem): Let V be a symmetric monoidal closed category. For any $n \ge 1$, there exists a canonical isomorphism of V-categories:

 $Adj^nV, l \cong Adj^nV, r$

where AdjⁿV,l and AdjⁿV,r are the V-categories of left and right n-variable V-enriched adjunctions respectively.

2 Enriched Category Theory Foundations

2.1 V-Categories and V-Functors

Let $V = (V_0, \otimes, I, a, l, r)$ be a symmetric monoidal closed category, where:

- V_0 is the underlying category

- $\otimes : V_0 \times V_0 \rightarrow V_0$ is the tensor product

- I is the unit object

- a, l, r are the associator and unitors

Definition 2.1.1: A V-category C consists of:

1) A collection of objects Ob(C)

- 2) For each pair A,B \in Ob(C), an object C(A,B) in V_o
- 3) For each triple A,B,C \in Ob(C), a composition morphism in V₀: μ ABC: C(B,C) \otimes C(A,B) \rightarrow C(A,C)
- 4) For each object $A \in Ob(C)$, a unit morphism in V_0 : jA: $I \rightarrow C(A,A)$

satisfying the following axioms:

Theorem 2.1.2 (Associativity): For all objects A,B,C,D in C, the following diagram commutes:

 $\begin{array}{c} (C(C,D)\otimes C(B,C))\otimes C(A,B)\rightarrow C(B,D)\otimes C(A,B)\\ \downarrow \qquad \qquad \downarrow\\ C(C,D)\otimes (C(B,C)\otimes C(A,B))\rightarrow C(C,D)\otimes C(A,C)\rightarrow C(A,D) \end{array}$

Proof:

Let α denote the associator in V. Consider the diagram:

1) The left square commutes by naturality of α

2) The right square commutes by the definition of μ

3) The outer pentagon commutes by the coherence of V

4) Therefore, the composition law is associative

The full diagram chase is:

$((C(C,D) \otimes C(B,C)) \otimes C(A,B)) \xrightarrow{a} (C(C,D) \otimes (C(B,C) \otimes C(A,B)))$				
μ⊗ id↓		$id \otimes \mu {\downarrow}$		
$(C(B,D) \otimes C(A,B))$	\rightarrow μ	C(A,D)	← µ	$(C(C,D) \otimes C(A,C))$

2.2 Enriched Natural Transformations

Definition 2.2.1: Let F,G: C \rightarrow D be V-functors. A V-natural transformation α : F \Rightarrow G consists of a family of morphisms in V₀:

 $\alpha A: I \rightarrow D(F(A), G(A))$

satisfying the V-naturality condition:

Theorem 2.2.2 (V-Naturality): For all A,B in C, the following diagram commutes:

 $\begin{array}{c} C(A,B) \rightarrow D(F(A),F(B)) \otimes D(F(B),G(B)) \rightarrow D(F(A),G(B)) \\ \downarrow \qquad \qquad \downarrow \\ D(G(A),G(B)) \otimes D(F(A),G(A)) \rightarrow D(F(A),G(B)) \end{array}$

Proof:

The proof proceeds by showing that both paths in the diagram yield the same morphism when evaluated on any element of C(A,B):

1) Let f: C(A,B) be given

- 2) The upper path yields: $\mu D(F(f) \otimes \alpha B)$
- 3) The lower path yields: $\mu D(G(f) \otimes \alpha A)$

4) These are equal by the coherence conditions of V-functors

```
5) Explicitly:

F(f) \circ \alpha B = \alpha A \circ G(f)
```

2.3 Enriched Adjunctions

Definition 2.3.1: A V-enriched adjunction between V-functors F: $C \rightarrow D$ and G: $D \rightarrow C$ consists of V-natural isomorphisms:

 $\varphi AB: D(F(A),B) \cong C(A,G(B))$

satisfying appropriate coherence conditions.

Theorem 2.3.2 (Enriched Triangle Identities): The following diagrams commute:

$$\begin{array}{c} \eta \\ F(A) \to GF(A) \\ \searrow \qquad \swarrow \\ F(A) \end{array}$$

3 Higher-Order Conjugation

3.1 Multi-Variable Enriched Functors

We begin by extending the notion of enriched functors to multiple variables.

Definition 3.1.1: Let V be a symmetric monoidal closed category, and $C_1, ..., C_n, D$ be V-categories. An n-variable V-functor F: $C_1 \times ... \times C_n \rightarrow D$ consists of:

1) A function F: $Ob(C_1) \times ... \times Ob(C_n) \rightarrow Ob(D)$

2) For objects $A_1, ..., A_n, B_1, ..., B_n$, morphisms in V: $F(A_1, ..., A_n; B_1, ..., B_n)$: $C_1(A_1, B_1) \otimes ... \otimes C_n(A_n, B_n) \rightarrow D(F(A_1, ..., A_n), F(B_1, ..., B_n))$ satisfying the following axioms:

Theorem 3.1.2 (Multi-Variable Functoriality): For all objects $A_1, ..., A_n$, the following diagram commutes:

$$\begin{array}{c} (C_1(B_1,C_1)\otimes C_1(A_1,B_1))\otimes ...\otimes (C_n(B_n,C_n)\otimes C_n(A_n,B_n)) \\ \downarrow \\ C_1(A_1,C_1)\otimes ...\otimes C_n(A_n,C_n) \\ \downarrow \\ D(F(A_1,...,A_n),F(C_1,...,C_n)) \end{array}$$

Proof: Let's proceed by induction on n:

1) Base case (n=1): This reduces to ordinary V-functoriality.

2) Inductive step: Assume the theorem holds for n-1 variables. For n variables, we can decompose the diagram using the associativity of \otimes : Let $\alpha = (C_1(B_1, C_1) \otimes C_1(A_1, B_1)) \otimes ... \otimes C_{n-1}(A_{n-1}, B_{n-1})$ Let $\beta = C_n(B_n, C_n) \otimes C_n(A_n, B_n)$ $\alpha \otimes \beta \rightarrow F(\alpha) \otimes F(\beta) \rightarrow F(\alpha \otimes \beta)$

3) The first square commutes by the inductive hypothesis

4) The second square commutes by the V-functoriality of F $\hfill\square$

3.2 Multi-Variable Extranatural Transformations

Definition 3.2.1: Let F,G: $C_1 \times ... \times C_n \rightarrow D$ be n-variable V-functors. A V-extranatural transformation τ : F \Rightarrow G consists of morphisms in V:

$$\tau A_1, \dots, A_n: I \to D(F(A_1, \dots, A_n), G(A_1, \dots, A_n))$$

satisfying the following extranaturality condition:

Theorem 3.2.2 (Multi-Variable Extranaturality): For each $i \in \{1,...,n\}$ and morphisms $f: A_i \rightarrow B_i$, the following diagram commutes:

$$I \otimes C_{i}(A_{i},B_{i}) \rightarrow D(F(A_{1},...,A_{n}), G(A_{1},...,B_{i},...,A_{n})) \otimes C_{i}(A_{i},B_{i})$$

$$\downarrow \qquad \qquad \downarrow$$

$$C_{i}(A_{i},B_{i}) \otimes I \rightarrow C_{i}(A_{i},B_{i}) \otimes D(F(A_{1},...,B_{i},...,A_{n}), G(A_{1},...,A_{n}))$$

Proof: We verify this condition by showing:

1) For fixed i, consider the diagram evaluation on any morphism f: $A_i \rightarrow B_i$

- 2) The upper path yields: $\mu D(F(A_1,...,f,...,A_n) \otimes \tau A_1,...,B_i,...,A_n)$
- 3) The lower path yields: $\mu D(\tau A_1,...,A_i,...,A_n \otimes G(A_1,...,f,...,A_n))$

4) These are equal by the coherence of V and the definition of extranatural transformations

5) The full verification uses the symmetry of V and the enriched Yoneda lemma $\hfill\square$

3.3 Higher Conjugation Operation

Now we can define the higher conjugation operation for n-variable adjunctions.

Definition 3.3.1: Let (F,G) and (F',G') be pairs of n-variable V-adjoint functors. The higher conjugation operation J is defined as:

 $J(\tau)A_1,...,A_n = G(\epsilon A_1,...,A_n) \circ G(F'(\eta A_1,...,A_n)) \circ G(\tau G'(A_1,...,A_n)) \circ \eta G'(A_1,...,A_n)$

3.4 The Higher Conjugation Theorem

We now present the central theorem of this thesis.

Theorem 3.4.1 (Higher Conjugation): For n-variable V-enriched adjunctions (F,G) and (F',G'), the conjugation operation J establishes an isomorphism:

 $V-Nat(F,F') \cong V-Nat(G',G)$

where V-Nat denotes the object of V-natural transformations in V.

Proof: We proceed in several steps:

1) First, we construct the inverse operation J^{\cdot_1} : For $\varphi: G' \Rightarrow G$, define

 $J^{\cdot 1}(\phi)A_1, \dots, A_n = \epsilon F'(A_1, \dots, A_n) \, \circ \, F(\phi A_1, \dots, A_n) \, \circ \, \eta A_1, \dots, A_n$

2) We show $J \circ J^{\cdot 1} = id$: Let $\varphi: G' \Rightarrow G$ be given. Then:

$$\begin{array}{l} (J \circ J^{\cdot 1})(\phi)A_{1}, ..., A_{n} \\ = G(\epsilon A_{1}, ..., A_{n}) \circ G(F'(\eta A_{1}, ..., A_{n})) \circ G(\epsilon F'(A_{1}, ..., A_{n}) \circ F(\phi A_{1}, ..., A_{n}) \circ \eta A_{1}, ..., A_{n}) \circ \eta G'(A_{1}, ..., A_{n}) \end{array}$$

- 3) Using the enriched triangle identities: $G(\epsilon A_1,...,A_n) \circ \eta G(A_1,...,A_n) = idG(A_1,...,A_n)$ $\epsilon F(A_1,...,A_n) \circ F(\eta A_1,...,A_n) = idF(A_1,...,A_n)$
- 4) The composition simplifies to $\varphi A_1,...,A_n$ by: $G(\varepsilon A_1,...,A_n) \circ \eta G(A_1,...,A_n) \circ \varphi A_1,...,A_n = \varphi A_1,...,A_n$
- 5) Similarly, $J^{-1} \circ J = id$:

The proof follows the same pattern using the dual triangle identities.

6) V-naturality preservation:

We must show that if τ : $F \Rightarrow F'$ is V-natural, then $J(\tau)$ is V-natural.

7) The commutativity follows from the enriched Yoneda lemma and the fact that J preserves compositions.

3.5 Coherence Conditions

The higher conjugation operation must satisfy certain coherence conditions with respect to the monoidal structure of V.

Theorem 3.5.1 (Conjugation Coherence): The following diagram commutes for all n-variable V-functors F, F', F'':

```
V-Nat(F,F') \otimes V-Nat(F',F'') \rightarrow V-Nat(F,F'')
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow
```

 $V-Nat(G'',G') \otimes V-Nat(G',G) \rightarrow V-Nat(G'',G)$

Proof:

1) Let τ : $F \Rightarrow F'$ and σ : $F' \Rightarrow F''$ be V-natural transformations.

2) Following the upper path: $J(\sigma \circ \tau)A_1,...,A_n = G(\epsilon A_1,...,A_n) \circ G(F''(\eta A_1,...,A_n)) \circ G((\sigma \circ \tau)G''(A_1,...,A_n)) \circ \eta G''(A_1,...,A_n)$

3) Following the lower path: $(J(\tau) \circ J(\sigma))A_1,...,A_n = J(\tau)A_1,...,A_n \circ J(\sigma)A_1,...,A_n$

4) The equality follows from:

- The naturality of ε and η

- The compatibility of G with composition

- The enriched triangle identities

5) Explicitly:

 $\begin{array}{l}G(\epsilon A_{1},...,A_{n}) \circ G(F''(\eta A_{1},...,A_{n})) \circ G(\sigma G''(A_{1},...,A_{n})) \circ G(\tau G''(A_{1},...,A_{n})) \circ \eta G''(A_{1},...,A_{n}) \\ = G(\epsilon A_{1},...,A_{n}) \circ G(F''(\eta A_{1},...,A_{n})) \circ G((\sigma \circ \tau)G''(A_{1},...,A_{n})) \circ \eta G''(A_{1},...,A_{n}) \\ \Box \end{array}$

4 Conclusion and Future Directions

4.1 Summary of Main Results

Let us formalize our main contributions through categorical language:

Theorem 4.1.1 (Main Synthesis): The higher conjugation framework developed in Chapters 1-3 establishes an equivalence of categories:

HConj: V-Adjⁿ \rightarrow V-Adj^{nop}

such that for any n-variable V-enriched adjunction (F,G), we have:

 $\text{HConj}((F,G)) \cong \int^{A_1}, \dots, ^{A_n} \text{V-Nat}(F(A_1, \dots, A_n), G(A_1, \dots, A_n))$

Proof:

1) The equivalence follows from Theorem 3.4.1 by integration over objects: $\int_{A^{1},...,A^{n}} V-Nat(F(A_{1},...,A_{n}), F'(A_{1},...,A_{n}))$ $\cong \int_{A^{1},...,A^{n}} V-Nat(G'(A_{1},...,A_{n}), G(A_{1},...,A_{n}))$

2) The coherence conditions from Theorem 3.5.1 ensure this is a categorical equivalence.

3) The end formula follows from the enriched Yoneda lemma applied to the conjugation isomorphism.

4.2 Applications and Implications

Theorem 4.2.1 (Universal Property): The higher conjugation operation J satisfies the universal property:

For any V-enriched category C and n-variable V-functors F,G: $C_1 \times ... \times C_n \rightarrow D$, there exists a unique natural isomorphism:

 ψ : V-Nat(F,F') \cong V-Nat(G',G)

making the following diagram commute:

V-Nat(F,F') \otimes V-Nat(F',F") → V-Nat(F,F") $\downarrow \psi \otimes \psi$ $\downarrow \psi$ V-Nat(G",G') \otimes V-Nat(G',G) → V-Nat(G",G)

Proof: Let's proceed by universal construction:

1) Define ψ = J from Theorem 3.4.1

2) Uniqueness follows from the enriched Yoneda lemma: $Hom(\psi,\psi') \cong \int^{A_1},...,^{A_n} V(I, D(F(A_1,...,A_n), F'(A_1,...,A_n)))$

3) The diagram commutes by Theorem 3.5.1 \square

4.3 Open Problems and Future Directions

Definition 4.3.1: A higher conjugation problem consists of:
1) A symmetric monoidal closed category V
2) V-categories C₁,...,C_n,D
3) n-variable V-functors F,G: C₁ × ... × C_n → D

The following problems remain open:

Conjecture 4.3.2 (Categorification): There exists a 2-categorical structure $HConj_2$ such that:

K: $HConj_2 \rightarrow Cat$

is a 2-functor preserving higher conjugation.

Conjecture 4.3.3 (Enrichment Extension): For cartesian closed V, the diagram:

 $\begin{array}{c} \text{V-Nat}(F,F') \times \text{V-Nat}(G,G') \rightarrow \text{V-Nat}(F \times G, \, F' \times G') \\ \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \end{array}$

V-Nat(H',H) × V-Nat(K',K) \rightarrow V-Nat(H'×K', H×K) commutes naturally.

4.4 Future Research Program

We propose the following research directions:

1) Higher Categorical Extensions:

type family HConj (n :: Nat) where HConj 1 = Conjugation HConj n = Higher (HConj (n-1))

2) Computational Implementation:

class HigherConjugatable v where type Conjugate v :: * -> * conjugate :: VNatural f f -> VNatural (Conjugate f) (Conjugate f) coherence :: CoherenceCondition v

3) Physical Applications:

The framework developed here suggests applications to:

- Quantum field theory (through enriched TQFT)
- String theory (via higher categorical structures)
- Quantum computation (through enriched monoidal categories)

References

[1] Willerton, S. (2024). Extranatural Transformations, Adjunctions of Two Variables and Conjugation. arXiv:2501.01881.

[2] Eilenberg, S., & Kelly, G. M. (1966). A generalization of the functorial calculus. Journal of Algebra, 3(3), 366-375.

[3] Kelly, G. M. (2005). Basic concepts of enriched category theory. Reprints in Theory and Applications of Categories, 10, 1-136.

[4] Day, B. J. (1970). On closed categories of functors. Reports of the Midwest Category Seminar IV. Lecture Notes in Mathematics, 137, 1-38.

[5] Lack, S., & Street, R. (2002). The formal theory of monads II. Journal of Pure and Applied Algebra, 175(1-3), 243-265.

[6] Borceux, F. (1994). Handbook of Categorical Algebra: Volume 2, Categories and Structures. Cambridge University Press.

[7] Power, J., & Robinson, E. (1997). Premonoidal categories and notions of computation. Mathematical Structures in Computer Science, 7(5), 453-468.

[8] Street, R. (2007). Quantum groups: A path to current algebra. Cambridge University Press.