
Prompt: Set up and solve problems related to quantum mechanics (Schrodinger equation). 

CTIS: 

1. The Classical Harmonic Oscillator: 

Before delving into the quantum realm, let us first recall the classical harmonic oscillator. In 
classical mechanics, a harmonic oscillator is a system that, when displaced from its equilibrium 
position, experiences a restoring force proportional to the displacement. The archetypal example is 
a mass attached to a spring. 

The potential energy of a classical harmonic oscillator is given by: 

V(x) = (1/2)kx^2 

where k is the spring constant, characterizing the stiffness of the spring, and x is the displacement 
from the equilibrium position. The total energy of the system is the sum of kinetic and potential 
energies: 

E = (1/2)mv^2 + (1/2)kx^2 

where m is the mass of the oscillating particle and v is its velocity. The equation of motion for this 
system is: 

m(d^2x/dt^2) = -kx 

This differential equation has solutions of the form: 

x(t) = A cos(ωt + φ) 

where A is the amplitude, ω = √(k/m) is the angular frequency, and φ is the phase. The energy of the 
classical oscillator can take on any non-negative value and varies continuously. 

2. Quantum Mechanical Description: 

In quantum mechanics, we describe the state of a system using a wave function ψ(x,t), which 
evolves according to the Schrödinger equation. For a particle in a potential V(x), the time-
dependent Schrödinger equation is: 

iℏ(∂ψ/∂t) = Ĥψ 

where ℏ is the reduced Planck constant (h/2π), and Ĥ is the Hamiltonian operator. For our system, 

the Hamiltonian is: 

Ĥ = -(ℏ^2/2m)(∂^2/∂x^2) + V(x) 

Substituting the harmonic oscillator potential V(x) = (1/2)kx^2, we obtain: 
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iℏ(∂ψ/∂t) = -(ℏ^2/2m)(∂^2ψ/∂x^2) + (1/2)kx^2ψ 

3. Separation of Variables: 

To solve this partial differential equation, we employ the method of separation of variables. We 
hypothesize that the wave function can be expressed as a product of spatial and temporal 
components: 

ψ(x,t) = φ(x)χ(t) 

Inserting this ansatz into the time-dependent Schrödinger equation and dividing by φ(x)χ(t), we 
obtain: 

(iℏ/χ)(∂χ/∂t) = -(ℏ^2/2mφ)(∂^2φ/∂x^2) + (1/2)kx^2 

The left-hand side depends only on t, while the right-hand side depends only on x. For this equality 
to hold for all x and t, both sides must equal a constant, which we denote as E. This constant 
represents the total energy of the system. Thus, we can separate our equation into two ordinary 
differential equations: 

(iℏ)(∂χ/∂t) = Eχ 

-(ℏ^2/2m)(∂^2φ/∂x^2) + (1/2)kx^2φ = Eφ 

4. Time-Dependent Part: 

The first equation describes the time evolution of the system: 

(iℏ)(∂χ/∂t) = Eχ 

This has the solution: 

χ(t) = exp(-iEt/ℏ) 

This solution represents a stationary state with energy E. The probability density |ψ|^2 = |φ|^2|χ|^2 = 
|φ|^2 is independent of time for these states. 

5. Time-Independent Schrödinger Equation: 

The second equation is the time-independent Schrödinger equation for the harmonic oscillator: 

-(ℏ^2/2m)(d^2φ/dx^2) + (1/2)kx^2φ = Eφ 

6. Dimensionless Form: 
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To simplify this equation, we introduce dimensionless variables. Let ω = √(k/m) be the classical 
angular frequency of the oscillator. We define a dimensionless position variable y and a 
dimensionless energy parameter α: 

y = √(mω/ℏ)x 

α = 2E/ℏω 

Substituting these into our equation and simplifying, we obtain the dimensionless Schrödinger 
equation: 

-(d^2φ/dy^2) + y^2φ = αφ 

7. Series Solution: 

To solve this equation, we employ the Frobenius method. We assume a series solution of the form: 

φ(y) = exp(-y^2/2) Σ(n=0 to ∞) c_n y^n 

Substituting this into our differential equation and equating coefficients, we obtain a recurrence 
relation for the coefficients c_n. This relation terminates if and only if α is an odd integer. This 
gives us the quantization condition: 

α = 2n + 1, n = 0, 1, 2, ... 

8. Energy Eigenvalues: 

Translating back to physical units, we obtain the energy eigenvalues: 

E_n = ℏω(n + 1/2), n = 0, 1, 2, ... 

This is a crucial result: the energy of the quantum harmonic oscillator is quantized, taking on only 
discrete values. Even in the ground state (n = 0), the oscillator has non-zero energy E_0 = (1/2)ℏω, 

known as the zero-point energy. 

9. Eigenfunctions: 

The eigenfunctions corresponding to these energy eigenvalues are: 

φ_n(y) = N_n H_n(y) exp(-y^2/2) 

where H_n(y) is the nth Hermite polynomial and N_n is a normalization constant given by: 

N_n = 1 / √(√π 2^n n!) 

The Hermite polynomials are defined by the recurrence relation: 

H_{n+1}(y) = 2yH_n(y) - 2nH_{n-1}(y) 
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with H_0(y) = 1 and H_1(y) = 2y. 

10. Wave Functions in Position Space: 

Translating back to the original x coordinate, the normalized wave functions are: 

φ_n(x) = (1/√(2^n n!)) (mω/πℏ)^(1/4) H_n(√(mω/ℏ)x) exp(-mωx^2/2ℏ) 

The ground state (n = 0) wave function is particularly simple: 

φ_0(x) = (mω/πℏ)^(1/4) exp(-mωx^2/2ℏ) 

This represents a Gaussian distribution centered at x = 0. 

11. Probability Densities: 

The probability density for finding the particle at position x in the nth energy eigenstate is given by |
φ_n(x)|^2. For the ground state: 

|φ_0(x)|^2 = √(mω/πℏ) exp(-mωx^2/ℏ) 

This distribution has a maximum at x = 0 and falls off exponentially for large |x|. The width of the 
distribution is characterized by the length scale l = √(ℏ/mω), known as the oscillator length. 

12. Uncertainty Principle: 

The quantum harmonic oscillator beautifully illustrates Heisenberg's uncertainty principle. In the 
ground state, we can calculate: 

Δx = √(ℏ/2mω) 

Δp = √(mℏω/2) 

The product ΔxΔp = ℏ/2, which is the minimum allowed by the uncertainty principle. 

13. Raising and Lowering Operators: 

An elegant approach to the quantum harmonic oscillator involves the use of raising (â†) and 
lowering (â) operators: 

â = √(mω/2ℏ) x + i√(1/2mℏω) p 

â† = √(mω/2ℏ) x - i√(1/2mℏω) p 
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where p = -iℏ(d/dx) is the momentum operator. These operators satisfy the commutation relation [â, 

â†] = 1. 

The Hamiltonian can be expressed in terms of these operators: 

Ĥ = ℏω(â†â + 1/2) 

The number operator N̂ = â†â has eigenstates |n⟩ with eigenvalues n: 

N̂|n⟩ = n|n⟩ 

The raising and lowering operators act on these states as follows: 

â†|n⟩ = √(n+1) |n+1⟩ 
â|n⟩ = √n |n-1⟩ 

This formalism provides a powerful algebraic method for analyzing the harmonic oscillator and 
related systems. 

14. Coherent States: 

Coherent states |α⟩ are eigenstates of the lowering operator: 

â|α⟩ = α|α⟩ 

where α is a complex number. These states minimize the uncertainty product ΔxΔp and most closely 
resemble classical oscillatory motion. 

15. Applications and Implications: 

The quantum harmonic oscillator model has far-reaching applications in physics: 

a) Molecular vibrations: The vibrations of diatomic molecules can often be approximated as 
harmonic oscillators. 

b) Phonons in solids: Lattice vibrations in crystals are described using harmonic oscillator models. 

c) Quantum optics: The electromagnetic field in a cavity can be modeled as a collection of 
harmonic oscillators. 

d) Quantum field theory: Each mode of a quantum field is treated as an independent harmonic 
oscillator. 

e) String theory: The excitations of fundamental strings are described by harmonic oscillator modes. 

16. Numerical Methods: 
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For more complex potentials that deviate from the perfect quadratic form, numerical methods 
become essential. The finite difference method or the shooting method can be employed to solve the 
Schrödinger equation numerically. For instance, using the finite difference method, we can 
discretize the x-axis and approximate the second derivative: 

(d^2φ/dx^2) ≈ (φ_{i+1} - 2φ_i + φ_{i-1}) / Δx^2 

This transforms the differential equation into a matrix eigenvalue problem that can be solved using 
linear algebra techniques. 

In conclusion, the quantum harmonic oscillator stands as a cornerstone of quantum mechanics, 
providing profound insights into the nature of quantized energy levels, wave functions, and the 
uncertainty principle. Its mathematical tractability, coupled with its wide-ranging applicability, 
makes it an indispensable model in the study of quantum systems. The concepts and techniques 
developed in the analysis of the quantum harmonic oscillator form a crucial foundation for 
understanding more complex quantum phenomena and for developing advanced theories in modern 
physics.
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